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Abstract. We present a new approach to model edges in monochrome
images. The method is divided in two parts: the localization of possible
edge points and their valuation. The first part is based on the theory
of minimal paths, where the selection of an energy and a set of sources
determines a partition of the domain. Then, the valuation is obtained
by the creation of a contrast driven hierarchy of partitions. The method
uses only the original image and supplies a set of closed contours that
preserve semantically important characteristics of edges.

1 Introduction

The presence of sharp discontinuities in the image intensity seems to play a fun-
damental role for the interpretation of visual information in humans. Therefore,
edge detection has been a very active field of research since the early days of
computer vision. Originally, edge detection techniques were motivated by the
generalization to the plane of signal processing methods and the adaptation of
regular analysis tools to the discrete domain. Thus, differentiation appeared as
the natural operation to address the problem. Many estimations of the image
derivatives and models for the edges have been proposed in the last decades.
Examples include the zero crossings of the Laplacian [22], the maxima in the
gradient direction [4] and the crest lines of the gradient’s modulus. However, in
spite of their diversity, the strategy in many edge detection methods consists in
a differential approach and the use of local image information to measure the
relevance of the edge points [30, 10].

The classical approach to address this issue in the context of mathematical
morphology is the characterization of edges as the watershed lines of the gradi-
ent’s modulus [2, 31]. Among the reasons for the large popularity of this method
one can cite its intuitive definition, efficient algorithms for its implementation
and the fact that the watersheds supply a set of closed edges. In the regular
framework, the watersheds were defined as the skeleton by influence zones of
a determined distance function [27]. These ideas inspired a construction of the
watersheds using curve evolution [21].

The proposed approach to model the edges in an image follows the oppo-
site direction. Our starting point is the theory of minimal paths, described in
Section 2, where a partition of the domain is determined by the choice of an
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energy and a set of sources. In Section 3, we introduce an energy called the path
variation, a generalization of the one dimensional total variation for functions
of two variables. This energy preserves the geometric structure of the function
and allows to work directly on the original image. In Section 4, the choice of the
intensity extrema as sources provides a piecewise constant simplification of the
image, whose discontinuities are designated as the extrema edges of the image.
Finally, in Section 5, we consider the valuation of the extrema edges using global
image information. For this purpose, a family of nested partitions, guided by a
notion of contrast, is constructed.

2 Minimal Paths and Energy Partitions

This introductory section presents the mathematical framework for the rest of
the paper. Basic definitions are recalled and the notations settled.

Let Ω ⊂ IR2 be a compact connected domain in the plane and x, y ∈ Ω two
points. A path from x to y designates a continuous function γ : [a, b] → Ω such
that γ(a) = x and γ(b) = y. The image of γ is then a curve in Ω. If γ ∈ C1([0, L])
and we consider an arc-length parametrization of γ (i.e. ‖γ̇(s)‖ = 1, ∀s ∈ [0, L]),
then L represents the Euclidean length of the path and its image is a rectifiable
simple curve. The set of paths from x to y is noted by Γxy and the set of paths
in Ω is noted by ΓΩ .

Definition 1. The surface of minimal action, or energy, of a potential
function P : Ω × S1 → IR+ with respect to a source point x0 ∈ Ω, evaluated at
x, is defined as

E0(x) = inf
γ∈Γx0x

∫ L

0

P (γ(s), γ̇(s)) ds .

When P depends only on the position γ(s) and is strictly positive, the com-
putation of the energy can be performed using Sethian’s Fast Marching method
[33], as detailed in [6].

The surface of minimal action with respect to a set of sources S = {xi}i∈J

is defined as the minimal individual energy:

ES(x) = inf
i∈J

Ei(x) .

In the presence of multiple sources, a valuable information is provided by the
interaction in the domain of a source xi with the other elements of S, which is
expressed through its influence zone:

Zi = {x ∈ Ω |Ei(x) < Ej(x), ∀j ∈ J} .

Thus, the influence zone, or briefly the zone, is a connected subset of the domain,
completely determined by the energy and the rest of the sources. Their union is
noted by:

Z(E,S) =
⋃

i∈J

Zi .
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The medial set is defined as the complementary set of Z(E,S):

M(E,S) = {x ∈ Ω | ∃ i, j ∈ J, i 6= j : ES(x) = Ei(x) = Ej(x)} .

Therefore, the selection of an energy and a set of sources defines an energy
partition Π(E, S) of the domain:

Π(E, S) = Z(E,S)
⋃

M(E, S) .

Energy minimizing paths have been used to address several problems in the
field of computer vision, where the potential is generally defined as a function of
the image. Examples include the global minimum for active contour models [6],
shape from shading [17], continuous scale morphology [18], virtual endoscopy [8]
and perceptual grouping [5].

3 The Path Variation

In the usual approach for the application of minimal paths to image analysis,
a large part of the problem consists in the design of a relevant potential for a
specific situation and type of images. However, we adopt a different perspective
and use the notions of the previous section for the study of a particular energy,
whose definition depends only on geometric properties of the image.

3.1 Definition

For functions of one real variable, the variation is a functional with known prop-
erties [14, 29]. It was introduced by Jordan [16] as follows:
Let f : [0, L] → IR be a function, σ = {s0, ..., sn} a finite partition of [0, L] such
that 0 = s0 < s1 < ... < sn = L and Φ the set of such partitions.
The variation, or total variation, of f is defined as

v(f) = sup
σ∈Φ

n∑

i=1

|f(si)− f(si−1)| .

If f ∈ C1([0, L]), then the variation can be expressed as:

v(f) =
∫ L

0

|f ′(s)| ds . (1)

The path variation is a generalization of the total variation for two variable
functions:

Definition 2. The path variation of a function u : Ω ⊂ IR2 → IR with respect
to a source point x0 ∈ Ω, evaluated at x, is defined as

V0(u)(x) = inf
γ∈Γx0x

v(u ◦ γ) .
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Fig. 1. Simple example: graphs of u and V0(u).

Thus, the path variation between two points is given by the minimal variation
of the function on all the paths that join them.

Definition 3. The space of functions of bounded path variation of Ω, noted
by BPV (Ω) is defined by

BPV (Ω) = {u : Ω → IR | ∀x0, x ∈ Ω, ∃ γ̂ ∈ Γx0x : V0(u)(x) = v(u ◦ γ̂) < ∞} .

In the sequel, we suppose that u has bounded path variation.
If u is a continuously differentiable function, then (1) allows to reformulate

V0(u) as

V0(u)(x) = inf
γ∈Γx0x

∫ L

0

|D ·
γ
u(γ(s))| ds . (2)

Hence, V0(u) may be seen as a surface of minimal action for the potential P =
|Dγ̇u|, the absolute value of the directional derivative of u in the tangent direction
of the path.

The intuitive interpretation of the path variation is illustrated in Fig. 1:
consider a particle moving along the graph of the function depicted on the left
and starting at the source x0. Then, as shown on the right, the value of V0(u)
evaluated at x represents the minimal sum of ascents and descents to be travelled
to reach the point x.

The path variation expresses the same notion as the concept of linear vari-
ation, introduced in [19], though in a formulation without paths, as a part of a
geometric theory for functions of two variables .

The component of u containing x, noted by Kx, designates the maximal
connected subset of Ω such that u(y) = u(x), ∀y ∈ Kx. The importance of the
components for the path variation is given by the following proposition, whose
proof is an immediate consequence of Def. 2.
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Proposition 1. The path variation acts on the components of the function:

∀x, y ∈ Ω, Kx = Ky ⇒ ∀x0, V0(u)(x) = V0(u)(y) .

Therefore, each element of an energy partition induced by the path variation
is a union of components of the function. Thus, the operator that associates
Π(V (u), S) to a set of sources S is connected [32] and its application simplifies
the image while preserving its geometrical structure.

In the discrete domain, the component structure of the function can be repre-
sented in a region adjacency graph. Hence, with this approach, the computation
of the path variation is reduced to finding the path of minimal cost on a graph.
This classical problem can be solved using a greedy algorithm [9, 20]. For a dis-
crete definition of the path variation and implementation details, the reader is
referred to [1].

3.2 Path Variation and Image Distance

In the context of mathematical morphology, the surface of minimal action asso-
ciated to the potential P = ‖∇u‖, given by the formula:

W0(u)(x) = inf
γ∈Γx0x

∫ L

0

‖∇u(γ(s))‖ ds

was used to define the watershed transform in the continuous domain [26, 23].
If, as for the class of Morse functions, u has only isolated critical points, then
W0 induces a distance transform on Ω, called the image distance [26] or the
topographic distance [23].

The relation between W and V in the regular framework is expressed by the
following property:

Proposition 2. If u is a Morse image, u ∈ BPV (Ω) and x0 ∈ Ω, then

|u(x)− u(x0)| ≤ V0(u)(x) ≤ W0(u)(x), ∀x ∈ Ω .

In particular, if x and x0 belong to a line of steepest slope for u, then

|u(x)− u(x0)| = V0(u)(x) = W0(u)(x) ,

The proof of this proposition [1] follows from simple calculus and the fact that,
by definition, |D ·

γ
(u)| = ‖∇u‖ when γ̇ is parallel to the gradient.

The behavior of these two energies can be compared using the test image
shown on the right column of Fig. 2 and given by the simple formula u(x) =
c‖x − x0‖. The set of sources in this case is S = {x0, x1}, where x0 is the
upper left and x1 the lower right corners of the domain. The central column
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Fig. 2. From left to right. Top: u, VS(u) and WS(u). Bottom: Graph of u, energy
partitions Π(V (u), S) and Π(W (u), S)

shows the effect of the path variation: as a consequence of Prop. 1, u and VS(u)
have in this example the same components and only their level is modified. The
medial set M(V (u), S), shown on black, is the component whose level is the
average of the sources’ levels. On the right column, we can observe that, since
‖∇u‖ is constant, WS(u) is proportional to the Euclidean distance to the closest
source and M(W (u), S) corresponds to the medial line between the sources;
however, in this example, the medial set falls in the intergrid space. Note that
any other function for which ‖∇u‖ is constant would produce the same partition
Π(W (u), S). This example illustrates how Π(V (u), S), the partition induced by
V , preserves the image structure better than Π(W (u), S).

4 The Extrema Edges

4.1 The Extrema Partition

Surfaces of minimal action are often appropriated for a local level of analysis in
the image. This is due to the fact that Def. 1 is based on an integration along
the paths. Consequently, this type of energies may lose their meaning when the
zones become too large. Besides, replacing a source xi ∈ S by another point
x′i ∈ Zi usually modifies the resulting energy partition.

Therefore, in order to construct an energy partition based on the path vari-
ation, the set of sources must be selected with care. Firstly, they should be
physically representative of the image content. Secondly, each significant feature
should contain at least one of them. Since they satisfy these conditions, the
intensity extrema appear as natural candidates for the sources.
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Fig. 3. Test image, energy end extrema partition.

Definition 4. The extrema partition of an image u : Ω → R is defined as
Π(V (u), ext(u)), the energy partition induced by the path variation and the set
of extremal components of u.

Thus, Prop. 1 implies that the elements of the extrema partition are unions
of components of u. By definition, they can be divided in two types: on the
one hand, the influence zones of the extrema, interpreted as the atoms or ele-
mental zones of the image; on the other hand, the elements of the medial set
M(V (u), ext(u)) are designated as boundary components of the atoms.

Figure 3 illustrates our approach on a simple regular case. The function u,
on the left, is a Gaussian blob, where the only extremal components are the
center and the border of the squared domain. The image on the middle shows
the energy Vext(u)(u), rescaled by a factor of 2 for better visualization. On the
right, the extrema partition Π(V (u), ext(u)) is composed by two elemental zones
and a circular boundary component, fragmented by the quantization.

4.2 Definition of the Extrema Edges

The effects of the extrema partition on smooth functions, suggest the use of the
boundary components to model the edges in the image. Nevertheless, in practice,
digital images are subsampled on a discrete grid. Consequently, as noted in the
previous examples, important parts of the medial set may fall in the intergrid
space. An alternative to surround this problem is to consider an energy partition
composed only by zones. Thus, the elements of the medial set that would fall
exactly in the grid are assigned to one of their neighboring influence zones.

Then, an approximation of the image can be constructed by the assignation
of a model to represent each influence zone. The model is determined by the
distribution of the image values; simple models are the mean or median value in
the zone, or the level at the source. When the model is constant, the valuation
of each zone by its model produces a piecewise constant approximation of the
image, referred in the sequel as a mosaic image. The mosaic corresponding to
the extrema partition will be called the extrema mosaic of u. Generally, on real
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Fig. 4. Image and extrema mosaic.

images, the intensity at the extremum represents accurately the atom’s levels.
Hence, unless stated differently, this model was chosen.

The choice of the path variation as the energy and the spatial distribution of
the intensity extrema provide a compromise between content conservation and
simplification in the extrema mosaic. Perceptually, the effects of this piecewise
constant approximation of the image can be better appreciated when the ratio
between the number of components in the original image and the number of
atoms is high. Figure 4 shows an example where this ratio is 68. On the left, we
can observe the original image and, on the right, its extrema mosaic. This image
illustrates well three important properties of our approach. First, a contrast
enhancement in the butterfly’s wings, mainly due to the choice of the zone model.
Second, a reduction of the blur in the background, caused by the absorption of
blurred contours and transition zones by neighboring atoms. Last, but not least,
note how the boundaries of the atoms model accurately the contour information
and, particularly, semantically important characteristics of edges such as corners
and junctions. Therefore, they constitute a sound set of closed curves to search
for edges in the image:

Definition 5. The extrema edges of an image are defined as the discontinu-
ities of its extrema mosaic.

4.3 Extrema Edges and Watersheds

In mathematical morphology, the edges in an image u are usually modelled as
the watershed lines of its gradient’s modulus, g = ‖∇u‖ [2, 31]. Their construc-
tion can then be obtained by a flooding process: a gradient image, seen as a
topographical surface, is pierced at its regional minima and progressively im-
mersed in water. The water floods uniformly the valleys, or catchment basins of
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the minima, and, at the points where two lakes meet, a dam is built. When the
surface is totally immersed, the union of the dams forms the watershed lines.
This interpretation of the watershed transform inspired efficient algorithms for
its implementation [34] and allowed the formalization of the watersheds in the
continuous domain as the skeleton by influence zones of the image distance [26].
Furthermore, it suggested the interpretation of the minima of g as the dual con-
cept of edges: the sources. In our notation, starting at a source x0 ∈ Ω, this
energy can be written as

Ŵ0(g) = W0(g) + g(x0) . (3)

Thus, the energy associated to the segmentation by watersheds of an image u
can be expressed as

Ŵmin(g)(g) = inf
mi∈min(g)

Ŵi(g) ,

where min(g) denotes the set of regional minima of g. This continuous formu-
lation motivated the implementation of the watersheds using the Fast Marching
method [21].

Therefore, Π(Ŵ (g), min(g)), the energy partition associated to the water-
shed transform, has the following interpretation: the medial set M(Ŵ (g),min(g))
corresponds to the watershed lines of g and represent the edges in u. Besides,
Z(Ŵ (g),min(g)), the zones of the minima, coincide with the lakes, or catchment
basins of the topographical surface.

If we use V instead of W in (3), we obtain the following result, whose proof
is based on Prop. 1 and 2 and the fact that, for Morse images, each catchment
basin corresponds to the set of lines of steepest slope ending at its minimum
[26].

Proposition 3. If g is a Morse image and g ∈ BPV (Ω), then

M(V̂ (g),min(g)) =
⋃

x∈M(Ŵ (g),min(g))

Kx

Thus, the medial set of V̂ coincides with the set of components of the wa-
tershed lines. Hence, in the continuous domain, the use of V on the gradient
generally produces edges thicker than the watersheds.

In practice, as happens for the boundary components, the watersheds are
usually fragmented in real images. Therefore, in order to compare the extrema
edges and the watersheds, we used their corresponding mosaics. Indeed, the con-
struction of both mosaics depends on the same factors: the digital connectivity,
the gray level on the zones and the rule of assignation for the medial set. How-
ever, the fundamental difference is that the former is defined in the original
image, while the latter is built on the modulus of its gradient. Consequently,
the watershed lines depend also on the choice of a discrete approximation of the
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Fig. 5. Above: original image and extrema mosaic. Below: mosaics of the energy par-

titions Π(Ŵ (g), min(g)) and Π(V̂ (g), min(g)).

gradient. Moreover, a smoothing step is usually performed by most gradient op-
erators in order to well pose differentiation [30, 10]. Since the smoothing implies
a loss of information in the image content, the watersheds suffer from limited
resolution in certain cases. These problems cannot be neglected in fields where
the precision of the extracted features is an essential issue, as in medical image
analysis.

Figure 5 depicts the mosaics associated to the different models of edges pre-
sented. The first row shows the original image, a detail of the cameraman, and
the extrema mosaic. The second row depicts, on the left, the watershed mosaic
constructed on the morphological gradient and, on the right, the mosaic corre-
sponding to the choice of V̂ as the energy and the gradient’s minima as sources.
For all the cases 8-connectivity was used, the zone model was the source’s level
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and the points in the medial set were assigned to the first source to reach them.
As a consequence of the spatial distribution of the sources and their large num-
ber, all the methods preserve the main features in the scene, such as the silhou-
ette of the man. However, the extrema mosaic enhances perceptually important
details like the mouth or the inner parts of the camera that are lost in the mo-
saics of the second row. The loss of information is due to the absence of regional
minima inside those features and, even if the result may be improved by chang-
ing the type of gradient operator or the connectivity, the problem is intrinsic to
the use of the gradient image. Finally, since Prop. 3 implies that the partitions
Π(Ŵ (g),min(g)) and Π(V̂ (g),min(g)) differ mainly in their medial set, the two
mosaics in the second row are almost identical.

5 Valuation of the Extrema Edges

Once a set of candidates for the edge points has been determined, the next
problem is the integration of this local information into meaningful curves. In
this section, we propose to construct a contrast driven hierarchy of partitions to
provide global image information for the valuation of the extrema edges.

The idea of progressively merging regions of an initial partition has been
used for a long time to address image segmentation problems [3, 15, 7, 13, 25].
In general, this type of methods can be implemented efficiently using a region
adjacency graph (RAG), as described in [35, 11].

A RAG is an undirected graph where the nodes correspond to connected
regions of the domain. The links encode the vicinity relation and are weighted
by a dissimilarity measure. The dissimilarity δ is a function defined for every
couple of neighboring regions. It takes values in an interval I = [0, Λ], referred
in the sequel as the set of indices or scales.

Then, removing the links of the RAG for increasing values of the dissimilarity
and merging the corresponding regions produces a family of nested partitions,
or hierarchy, {Pλ}λ∈I , where every region in Pµ is a disjoint union of regions in
Pλ, for µ ≥ λ. Therefore, in this context, the selection of the initial partition
and the dissimilarity measure determines the resulting hierarchy.

The watershed flooding provides a classical example of hierarchical segmen-
tation: the gradient’s modulus is again flooded from its minima but, instead of
building a dam at the meeting points, the lakes merge. Increasing levels of water
produce coarser partitions and the resulting hierarchy is known as the dynamics
[12]. In terms of a region merging process, the initial partition is composed by
the watershed mosaic and the dissimilarity is defined as the height of the saddle
point between two adjacent lakes, i.e. the minimal value of the gradient in the
common border of the regions [24].

Since our purpose was to construct a contrast driven hierarchy, the dissimi-
larity was measured on the initial partition and only boundary information was
taken into account. Thus, we considered a local dissimilarity: the absolute value
of the gray level difference of neighboring regions on the initial partition. Then,
the dissimilarity was defined as a function of the local dissimilarities’ distribu-
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Fig. 6. Extrema mosaic and segmentation for the scale λ = 54.

tion in the common boundary of the regions. For the examples presented in this
paper, the dissimilarity was the average of the local dissimilarities. The resulting
hierarchy is noted by H.

Figure 6 illustrates the application of H. The left image displays the initial
partition, the extrema mosaic of the cameraman. On the right, we can observe
the segmentation corresponding to the scale λ = 54. Note how H expresses the
perceived contrast in the image; at the scale presented, only contrasted regions
remain in the segmentation, regardless of their size.

In order to measure the relevance of the extrema edges, the notion of saliency
image of a hierarchy presents a particular interest:

The saliency of a pixel, with respect to a hierarchy of partitions {Pλ}λ∈I ,
is defined as the highest index λ for which the pixel belongs to a boundary of
Pλ. The valuation of each pixel by its saliency determines a saliency image.
The saliency image provides a compact description of the hierarchy: a threshold
λ in this image supplies the set of boundaries of the corresponding partition
Pλ. Thus, the usefulness of the saliency image is determined by the hierarchy.
The saliency image of the dynamics hierarchy was used in [28] to valuate the
watersheds.

Definition 6. The valuated extrema edges of an image u correspond to the
saliency image associated to the hierarchy H, when the initial partition is the
extrema mosaic of u.

The left image of Fig. 7 shows the valuated extrema edges of the cameraman,
while the right image displays the threshold corresponding to the scale λ = 54.

The main properties of our edge model may be summarized as follows. First,
the valuation is obtained using global contrast information and a simple thresh-
old in the valuated extrema edges determines a set of meaningful closed curves.
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Fig. 7. Valuated extrema edges and threshold for λ = 54.

Second, the location of edges is conserved through the scales. Last, but not least,
the use of the extrema mosaic preserves the geometric structure of the original
image and enhances the semantically important characteristics of edges.

Note that H can also be applied directly to the original image; however, the
use of the extrema mosaic generally improves the quality of the edges obtained.
Figure 8 shows an application to medical image analysis where the use of the
extrema mosaic as the initial partition is a crucial issue. The goal was to detect
a pathology called the drusen - the dark spots - in images of the eye fundus,
as the one shown on the top left. The variations in the background’s intensity
in retinal angiographies as well as the absence of abrupt discontinuities in the
drusen boundaries make their extraction a difficult problem with classical edge
detection methods. The top right image shows the saliency image associated to
H when the initial partition is the original image. The image was rescaled for
better visualization, but the scale Λ at which a single region remains is only
6. Since the transitions in the original image are smooth, the saliency image
produces blurred edges. In contrast, the second row depicts the application of
the extrema edges. On the left, we can observe the extrema mosaic, where the
drusen can be clearly distinguished from the background. The right image depicts
the valuated extrema edges, where Λ = 58. Note how the method provides the
location and the shape of the drusen with precision. Furthermore, their saliency
may be used to evaluate the magnitude of the disease.

6 Conclusion and Perspectives

We presented a new approach to model edges in the image. The method is
divided in two parts. First, a set of possible edge points, the extrema edges, is
defined and then a measure of saliency is assigned to every point in this set. The
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Fig. 8. Row 1: original image and saliency image. Row 2: extrema mosaic and valuated
extrema edges.

extrema edges are defined as the discontinuities of the mosaic image associated
to the energy partition Π(V (u), ext(u)). Their valuation is obtained using global
information through a family of nested partitions guided by a notion of contrast.
The method uses only the original image to construct a contour map called the
valuated extrema edges. A threshold in this image provides a set of closed curves
where semantically important characteristics of edges are preserved.

Finally, this paper focused on monochrome images in order to emphasize
the mathematical formulation of our approach and to establish a comparison
with the continuous watershed transform. Nevertheless, a straightforward appli-
cation to color images can be done by considering only their lightness channel.
Alternatively, we are presently working on the generalization of our approach to
vector-valued images.
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