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Abstract. Ultrasound images are used for a wide variety of medical pur-
poses because of their capacity to study moving structures in real time.
However, the quality of ultrasound images is significantly affected by
external factors limiting interpretability. We present UltraGAN, a novel
method for ultrasound enhancement that transfers quality details while
preserving structural information. UltraGAN incorporates frequency loss
functions and an anatomical coherence constraint to perform quality en-
hancement. We show improvement in image quality without sacrificing
anatomical consistency. We validate UltraGAN on a publicly available
dataset for echocardiography segmentation and demonstrate that our
quality-enhanced images are able to improve downstream tasks. To en-
sure reproducibility we provide our source code and training models.

Keywords: Generative Adversarial Networks · Echocardiography · Ul-
trasound images · Image quality enhancement.

1 Introduction

Echocardiography is one of the most commonly used tests for the diagnosis
of cardiovascular diseases as it is low-cost and non-invasive [13]. The quality
of echocardiogram images is highly related to three main factors: (i) intrinsic
characteristics of the sonograph, (ii) sonograph manipulation [5], and (iii) the
manual configurations of the operator. As the intrinsic configurations of each
device are hard to control in practice, factors such as the expertise of the user
and the contrast adjustment on the machine [23] may potentially affect the final
diagnosis. Fundamentally, the criteria to assess the presence of some pathologies
or the correct functionality of the left ventricle depends entirely on the quality of
the resulting images on this test [11]. Therefore, the interpretability of ultrasound
images is limited by their quality [4].

Once physicians acquire echocardiograms, they perform manual segmenta-
tion [21] to determine diagnostic measurements of the heart’s chambers [13].
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The quality of the resulting measurements depends directly on the precise out-
line of the chambers’ boundaries [21]. Nevertheless, if the ultrasound image has
a low quality, low resolution, or low contrast, the segmentation will be harder
because of the lack of a clear difference between two adjacent structures. With an
image that is not entirely intelligible, manual segmentation is purely done under
the visual subjectivity of the physician to recognize the heart’s boundaries.

Generative Adversarial Networks (GANs) [12] are a type of generative mod-
els that learn the statistical representation of the training data. During GAN
training, the generator network alternates with the discriminator, so the gen-
erator can produce new data that resembles the original dataset. GANs have
successfully tackled image-to-image transformation problems, including but not
limited to: image colorization [8], super resolution [28], multi-domain and mul-
timodal mappings [26], and image enhancement [7]. In the medical field, several
works have introduced GANs into their approach for tasks that include data
augmentation [3], medical images attacks [6] and image synthesis [29,2,1].

Recently, some automated methods have been developed for ultrasound im-
age quality enhancement [9,25,15,16]. Liao et al . [20] proposed a method to
enhance ultrasound images using a quality transfer network. The algorithm was
tested in echo view classification, showing that quality transfer helps improve the
performance. Also, Lartaud et al . [18] trained a convolutional network for data
augmentation by changing the quality of the images to create contrast and non-
contrast images for segmentation. The augmented data allowed the improvement
of the segmentation method. Jafari et al . [17] trained a model to transform qual-
ity between ultrasound images. The approach introduced a segmentation network
in the training of the GAN to provide an anatomical constraint added by the
segmentation task. Nevertheless, these methods were developed and evaluated
on private data, complicating the possibility of a direct comparison.

In this work, we present UltraGAN, a novel framework for ultrasound image
enhancement through adversarial training. Our method receives as input a low-
quality image and performs high quality enhancement without compromising
the underlying anatomical structures of the input. Our main contributions can
be summarized in the two following points: (1) We introduce specific frequency
loss functions to maintain both coarse and fine-grained details of the original
image. (2) We guide the generation with the anatomical coherence constraint by
adding the segmentation map as input in the discriminator.

As our results demonstrate, UltraGAN transfers detailed information with-
out modifying the important anatomical structures. Hence, our method could
be useful for a better interpretability in clinical settings. Moreover, for the quan-
titative validation of our method, we compare the resulting segmentations with
and without our enhancement, and we report an increase in performance in this
downstream task by adding our enhanced images to the training data. We make
our source code and results publicly available 3.

3 https://github.com/BCV-Uniandes/UltraGAN

https://github.com/BCV-Uniandes/UltraGAN
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Fig. 1. Overview of our generation scheme. We add a frequency consistency loss to pre-
serve fine details and coarse structures. We concatenate the segmentation map along
with the input image for the discriminator to classify as real or enhanced. This partic-
ular case corresponds to an enhanced input.

2 Methodology

Our method consists of a Generative Adversarial Network designed to enhance
the quality of ultrasounds without compromising the underlying anatomical in-
formation contained in the original image. The power of GANs relies on a mini-
max two-player game, where two different networks are trained in an adversarial
fashion. The generator (G) translates images from one domain to another, while
the discriminator (D) is in charge of determining whether the image is a real
example from the dataset or a generated example coming from G.

2.1 Problem Formulation

Given a set of low-quality ultrasounds {li}Ni=1 ∈ L with a data distribution

l ∼ pdata(l) and a set of high quality ultrasounds {hi}Ni=1 ∈ H with a data
distribution h ∼ pdata(h), our goal is to learn mapping functions that trans-
late from low to high quality domain and vice versa. Accordingly, we have two
generators GH : L → H and GL : H → L. We also have two discriminators:
DH distinguishes between real high quality images hi and generated high qual-
ity images GH(li), and DL distinguishes between real low-quality images li and
generated low-quality images GL(hi). Since we want our mapping functions to
be aware of the original structural information, we also have the segmentation
of the anatomical regions of interest present in the ultrasound image sh or sl.

It is important to note that at inference time, we only use the generator
trained for the translation from low to high quality, even though we optimized
for both generators in the training phase.

2.2 Model

We start from the generator architecture of CycleGAN [30] which consists of a
series of down-sampling layers, residual blocks and up-sampling layers. Fig. 1
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shows the training scheme for our model. For the discriminator, we build upon
PatchGAN [30,14]. Since we want our model to learn how to produce anatom-
ically coherent results, our discriminator has two inputs: the ultrasound image
(whether real or generated) and the corresponding segmentation of the anatom-
ical regions of interest.

2.3 Loss functions

To enforce the task of quality translation during training, we use an identity loss
and we alter the traditional adversarial and cycle consistency losses to create an
anatomically coherent adversarial loss and frequency cycle consistency losses.

Anatomically Coherent Adversarial Loss. The goal of the adversarial
loss is to match the generated images to the corresponding real distribution.
Inspired by the idea of conditional GANs [22] and pix2pix [14], we modify the
adversarial loss to include as input the segmentation of the anatomical regions
of interest. For the networks GH and DH our anatomically coherent adversarial
loss is defined as:

Ladv (GH ,DH) = Eh∼pdata(h) [logDH(h, sh)]

+ El∼pdata(l) [log (1− DH(GH(l), sl)]
(1)

By adding the segmentation as an input to the discriminator, we make sure
that the networks learn the underlying relationship between the anatomical re-
gions of interest and the structures in the generated image. Furthermore, the
segmentation is not necessary at test time, since we only use the generator. In
the final objective function, we also consider the adversarial loss for GL and DL.

Frequency Cycle Consistency. The cycle consistency loss [30] ensures a
direct one-to-one mapping from an image of one domain to another. However, the
cycle consistency constraint is a pixel-wise L1 norm between the original image
and the reconstruction, which enforces the output to have similar intensities.
Yet, during the process of quality enhancement, it is more useful to think of the
image in terms of frequency rather than intensity [10]. Low frequencies contain
the structural information of an image, while high frequencies contain the fine
details. With this concept in mind, we create two types of frequency consistency
losses enforcing our training scheme to improve quality enhancement.

During quality translation, we aim to preserve the structural information
present in the low frequencies of the original image. To extract low frequencies,
we pass the images through a Gaussian pyramid [24] φ at K scales, then compute
the L1 norm between the structural information of the original and the generated
image (Eq. 2). We also want our generators to transfer image details of the
corresponding quality in the form of high frequencies. Therefore, we obtain those
frequencies through a Laplacian pyramid [24] γ at K scales and calculate the L1
norm between the high frequencies of the original image and the high frequencies
of the reconstruction (Eq. 3). The loss concept is better illustrated in Fig. 1.

Llf (GH) =

K∑
k=1

‖φk(l)− φk (GH(l))‖1 (2)
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Lhf (GH ,GL) =

K∑
k=1

‖γk(l)− γk (GL(GH(l)))‖1 (3)

Identity Loss. The identity loss introduces a new constraint ensuring that
the generator does not modify images from the same domain. This loss is par-
ticularly useful for quality enhancement in real clinical applications. In practice,
we do not have a quality label but still we would like to transform all images to
high quality without modifying the image if it already has a high quality.

Lidt = ‖h−GH(h)‖1 (4)

Overall Loss. For simplicity, we show only one of the pathways in the loss
formulations, but our overall loss is defined as the weighted sum of the losses
in both pathways H → L and L → H, where each λ represents the relative
importance of each loss function in the system: LUltraGAN = λadvLadv +λlfLlf +
λhfLhf + λidtLidt.

3 Experiments

3.1 Dataset

To validate our method, we use the publicly available “Cardiac Acquisitions
for Multi-structure Ultrasound Segmentation” (CAMUS) dataset [19]. The CA-
MUS dataset contains 2D Ultrasound images and multi-structure segmentations
of 500 patients. This dataset is particularly relevant because it includes ultra-
sound images from three different qualities labeled by expert physicians. Besides,
CAMUS includes patients with different left ventricle ejection fraction, making
it a realistic problem with healthy and pathological subjects. The task in the
CAMUS dataset is to segment the left ventricular endocardium (LVEndo), left
ventricular epicardium (LVEpi) and left atrium (LA) in two chamber (2CH) and
four chamber (4CH) views for End of Diastole (ED) and End of Systole (ES).

Low Quality
Images

Enhanced
Images

Fig. 2. Qualitative comparison of the low-quality and enhanced images using Ultra-
GAN. Our method is able to enhance ultrasound images, improving the interpretability
of the heart structures regardless of the view.
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CycleGAN
results

UltraGAN
results

Low Quality
Images

Fig. 3. Qualitative comparison between CycleGAN result and UltraGAN. The images
generated by CycleGAN are perceptually similar to the original Low quality images. In
contrast, images enhanced by UltraGAN show a clear difference between anatomical
structures.

3.2 Experimental setup

We first assess the importance of each of the components of our method in the
task of quality enhancement. For simplicity, we divide the ultrasound images
into high and low quality, classifying the medium quality images as low quality
during our enhancement process. We train our method with 80% of the im-
ages and evaluate on the remaining images. We enhance the training data with
three variants of our system: without the anatomically coherent adversarial loss,
without the frequency cycle consistency losses, and with the original CycleGAN
losses. Nevertheless, the evaluation of image quality in an unpaired setup is a
subjective process and performing perceptual studies would require an extensive
effort by expert physicians. However, we take advantage of the publicly available
segmentation masks to provide multi-structure segmentation as a down-stream
quantitative metric, in which the right global anatomical structure is required
for a good performance.

As a baseline, we first train a simple U-Net model [27] using the standard
10 fold cross-validation split of the CAMUS dataset. Then, we use UltraGAN
to enhance the quality of all the training images and train the same U-Net with
the original images as well as the enhanced augmentation.

4 Results

4.1 Image Enhancement

The enhancement in image quality provided by UltraGAN is noticeable even for
untrained eyes. Fig. 2 shows the comparison between the low-quality images and



UltraGAN: Ultrasound Enhancement through Adversarial Generation 7

No Frequency 
consisntencyEnhanced Training

No Anatomical
coherence

No Anatomical
coherence and 
No Frequency
consistencyOriginal 

Poor Quality

Fig. 4. Ablation examples of our enhancement method. We show the results obtained
for every stage of the generation.

the enhanced images we produce. In the enhanced images, the heart’s chambers
are recognizable and their boundaries are easy to identify. The examples illus-
trate the preservation of anatomical consistency in the enhancement process for
both 2CH and 4CH views.

Furthermore, in Figs. 4 and 3 we demonstrate that the training choices for
our method improve over the baseline, in which we just consider the standard
loss function. We compare the original image against our enhancement showing
that there is a better definition of the structure of the heart with more de-
fined walls. We also compare the difference between having just the anatomical
coherence or the frequency consistency. The images enhanced using merely fre-
quency consistency maintain finer details, yet the system tends to hallucinate
high frequencies in the left part of the image. Conversely, considering just the
anatomical coherence, the structure is preserved but there is not a well definition
of heart regions. Overall, with UltraGAN we are able to create an image quality
enhancement that takes into account frequency and structural information.

4.2 Multi-structure segmentation

In Fig. 5 we show that the segmentations obtained by using the standard data
have artifacts, while training with UltraGAN-enhanced images improves the
resulting segmentation. Also, for quantitative results, Table 1 shows the Dice
Scores for this experiment. Here we find evidence of the previous results, show-
ing that for each of the structures present in the ultrasound image, augmenting

Groundtruth Baseline Training Enhanced Training Groundtruth Baseline Training Enhanced Training

Fig. 5. Qualitative results for heart segmentation in the CAMUS dataset by using our
enhanced images as data augmentation in the training stage. We present two different
test examples showing the groundtruth (columns 1 and 4), the baseline results (columns
2 and 5) and the improved segmentation (columns 3 and 6).
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Table 1. Segmentation results for 10-fold cross-validation set comparing standard
training vs training with quality enhancement.

Method
High (%) Medium (%) Low (%)

LVEndo LVEpi LA LVEndo LVEpi LA LVEndo LVEpi LA

Baseline 93.07 86.61 88.99 92.02 85.32 88.13 90.76 83.10 87.52
Our method 93.78 87.38 89.48 92.66 86.20 88.38 91.55 83.75 87.84

Table 2. Segmentation results for 10-fold cross-validation comparing the state-of-the-
art vs our quality enhanced training.

Image quality Method
ED (%) ES (%)

LVEndo LVEpi LVEndo LVEpi

High Ours 94.40±0.7 86.54±1.2 92.04±1.1 87.05±1.4

+ Medium Leclerc et al . 93.90±4.3 95.40 ±2.3 91.60±6.1 94.50±3.9

Low
Ours 93.00±1.1 83.57±1.9 90.10±1.3 83.93±2.7

Leclerc et al . 92.10±3.7 94.70±2.3 89.80±5.7 93.67±3.2

the training data with UltraGAN improves the segmentation results. This im-
provement is also consistent across all of the image qualities, suggesting that the
baseline with enhanced training data preserves correctly the anatomical struc-
tures present in the ultrasound images. We also evaluate separately the segmen-
tation of our enhanced images in a subset of the CAMUS dataset consisting of
patients at pathological risk with a left ventricle ejection fraction lower than
45%. We find that for pathological cases, the average Dice score (89.5) is as
good as for healthy patients (89.7). Thanks to the global consistency enforced
by the other heart structures, UltraGAN is able to extract accurately atypical
left ventricles.

Table 2 shows the comparison between the state-of-the-art method in the CA-
MUS dataset and our quality enhanced method for the High+Medium and Low
qualities in the 10 fold cross-validation sets. We do not include the comparison
for Left atrium segmentation since the authors do not report their performance
on that class. [19] uses a modified U-Net network to achieve the results. Here we
demonstrate that, even with a simpler network with less amount of parameters,
by enhancing the quality of the training images we are able to outperform state-
of-the-art approaches in left ventricular endocardium segmentation, and obtain
competitive results in left ventricular epicardium segmentation. Thus, demon-
strating that the inclusion of quality enhanced images during training can benefit
a model’s generalization.

5 Conclusions

We present UltraGAN, a Generative Adversarial Network designed for qual-
ity enhancement of ultrasound images. We achieve image enhancement of 2D
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echocardiography images without compromising the anatomical structures. By
using multi-structure segmentation as a downstream task we demonstrate that
augmenting the training data with enhanced images improves the segmentation
results. We expect UltraGAN to be useful in other ultrasound problems to push
forward automated ultrasound analysis.
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