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Abstract. Brain lesion segmentation is a critical application of com-
puter vision to the biomedical image analysis. The difficulty is derived
from the great variance between instances, and the high computational
cost of processing three dimensional data. We introduce a neural network
for brain tumor semantic segmentation that parses their internal struc-
tures and is capable of processing volumetric data from multiple MRI
modalities simultaneously. As a result, the method is able to learn from
small training datasets. We develop an architecture that has four paral-
lel pathways with residual connections. It receives patches from images
with different spatial resolutions and analyzes them independently. The
results are then combined using fully-connected layers to obtain a seman-
tic segmentation of the brain tumor. We evaluated our method using the
2017 BraTS Challenge dataset, reaching average dice coefficients of 89%,
88% and 86% over the training, validation and test images, respectively.
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1 Introduction

Brain tumors are abnormal formations of mass that apply pressure to the sur-
rounding tissues, causing several health problems such as unexplained nausea,
seizures, personality changes or even death [1]. They have different shapes, sizes
and internal structures, which makes the task of detection and classification dif-
ficult and highly dependent on the experience of the specialist, even for experts.
These lesions can be classified into Low-Grade Gliomas (LGG) and High-Grade
Gliomas (HGG). LGGs are benign, slowly growing tumors that can become life-
threatening in the course of disease. HGGs are malignant, fast growing tumors
capable of inducing the development of new tumors in different parts of the cen-
tral nervous system. Without an appropriate treatment, HGGs can be lethal in
just a few months [2, 3]. Even after a diagnosis had been made there is a high
probability that the treatment could not be the best one for that specific case.
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Nowadays, doctors make use of Magnetic Resonance Imaging (MRI) to visu-
alize the brain of a patient to look for any life-threatening abnormality. However,
finding those structures in a 3D medical image is a complicated task, highly
prone to error [4]. In spite of the fact that the treatment selection is based di-
rectly on the diagnosis, these days that process is made manually, which causes
it to be inefficient and observer-dependent. The responsibility to find whether
there is an abnormality or not in the exam lies on the neurologist’s hands, who
decides, based on his own experience, if there is a lesion and what is the best
way to proceed. As a consequence, the uncertainty of the patient’s outcome is
significant.

For more than a decade, automatic brain lesion segmentation has been a
topic of interest. Initial approaches to solve this problem were based on the
detection of abnormalities using healthy-brain atlases and probabilistic models
[5]. Later, results were improved using deformable registration fields along with
Markov Random Fields (MRF) [6]. Subsequent approaches using machine learn-
ing techniques, such as Random Forests [7, 8], yielded better results, reaching
an average dice coefficient of 60% in the 2012 BraTS Challenge.

In the last years, Convolutional Neural Networks (CNN) have shown out-
standing results in detection, classification and segmentation tasks, matching
humans. Part of this success is due to the rapid improvement of machine’s com-
putational power and to the CNNs ability of abstracting features in different
hierarchical representations of an image [9]. Fully convolutional networks (FCN)
proved to be an effective way to perform pixel-by-pixel classification [10], obtain-
ing a mean Intersection over Union (IoU) of 67% in the PASCAL-VOC dataset
in 2012, where the task was to produce an accurate segmentation of 20 different
categories in natural images. This method offers the advantage of combining
coarse and shallow semantic information from images with an arbitrary input
size [10]. In 2015, U-Net, an architecture based on FCN and specialized in the
task of segmenting medical images, was developed. U-Net’s architecture has a
contracting path to extract local information and an expanding path to locate
the object within the whole image [11]. Recently V-Net, an expansion of this
method to process three-dimensional data, was presented. V-Net demonstrated
a remarkable behavior in the MICCAI 2012 PROMISE Challenge dataset for
prostate segmentation in computerized tomography (CT), obtaining an aver-
age dice coefficient of 82% [12]. Another method to process medical images is
Deepmedic, a neural network that segments brain tumors using information from
different MRI modalities. It takes as inputs 3D patches (small volumetric cuts)
extracted from MRIs at different modalities, and analyzes the information using
two pathways. It then uses fully connected layers to obtain a segmentation of
each category [13].

In this paper, we aim at providing an efficient, accurate and objective way of
automatically estimating the volume and location of a brain tumor. For this pur-
pose, we use the 2017 BraTS Challenge dataset, which utilizes multi-institutional
pre-operative MRI scans and focuses on the segmentation of intrinsically het-
erogeneous (in appearance, shape, and histology) brain tumors, namely gliomas



[4, 14, 15, 16]. This open source dataset has MRIs from 210 patients with HGG
and 75 patients with LGG tumors for training; there are four different MRI
modalities per patient and annotations made by several specialists. In terms of
methodology, inspired by DeepMedic’s [13] success on modeling multisacale in-
formation, we developed a neural network with four contracting pathways and
residual connections that receive patches centered on the same voxel, but with
different spatial resolutions. During the testing stage, the average dice coefficient
and the Hausdorff distance were calculated to measure the performance of the
methods.

2 Methodology

2.1 Multimodality Volumetric Neural Network

Multiple resolutions: different architectures for semantic segmentation, such
as VGG [17] and FCN [10], take advantage of multiple image resolutions to
simultaneously extract fine details and coarse structures from the input data.
This is done using groups of convolutional layers and non-linearities, usually
Rectified Linear Units (ReLU), followed by pooling operations. However, as the
image resolution is reduced, so is the accuracy in the segmentation location.
To overcome this drawback, we designed a network that extracts features from
different input resolutions in a parallel and independent manner. This allows us
to retrieve detailed appearance data along with accurate semantic information.
After that, we can combine those results to obtain the final segmentation.

Figure 1 shows an overview of our approach. Our method has four identical
parallel pathways, each one with six convolutional layers and two residual con-
nections. All the paths receive patches centered at the same voxel, but extracted
from different versions of the image (original and downsampled by factors of
three, six and eight). The patches have input sizes of 363, 203, 183 and 153 for
the different resolution pathways. We tested different downsample factors and
input sizes, and the best result was chosen empirically on the validation set. In
addition, deconvolutional layers are used to upsample the outputs when neces-
sary. Finally, the results are concatenated and introduced in the fully connected
layers to be combined and then classified. The classification layer is a convolution
with kernel size of 13 and the final output is predicted using a softmax classifier.

Patch-wise approach: given the amount of data in a MRI, the memory re-
quirements to process each image are substantial. Furthermore, the use of mul-
tiple modalities increases the input size even more, resulting in considerable
memory consumption. On the other hand, segmenting brain tumors is a highly
imbalanced problem, in which the background voxels cover over 90% of the
images, while the remaining elements can belong to any of the three internal
structures of the tumor. Nonetheless, both of these problems can be addressed
by analyzing small patches rather than the whole image. This is because patches
do not only reduce the input data size, but can also be used to balance the



number of instances per category that the model will see. With this in mind, we
trained our method using patches extracted randomly from the training images.
The only constraints imposed were that 50% of the patches must be centered
on a foreground voxel, and no patches centered on background voxels that don’t
belong to the brain were extracted.

Fig. 1. Proposed Architecture. The kernels of the convolutions in the four pathways
are 33 and no padding was made in those operations. The input of the four paths
are 3D patches of each modality centered in the same voxel, but the lower resolution
patches are obtained from downsampled versions of the image by factors of 3, 6 and 8,
respectively.

2.2 Data

The method was trained, validated and tested using the BraTS challenge 2017
datasets. The training dataset includes 210 different MRI files from high grade
glioma (HGG) cases, and 75 MRIs from low grade gliomas (LGG). The validation
and test datasets include 46 and 146 different MRI files, respectively. Every image
has four modalities: T1, T1 contrast-enhanced, T2 and FLAIR. The ground
truth annotations were made by experts and manually-revised by board-certified
neuroradiologists, and were made publicly available only for the training dataset.
The annotations contain four different categories representing the background
and the internal structures of the tumor as shown in Figure 2 and listed below
[4, 14, 15, 16]:

0. Everything Else.



1. Necrosis and Non-Enhancing tumor.
2. Edema.
4. Enhancing tumor.

The internal structures are used to obtain the segmentations of the three glioma
sub-regions evaluated in the challenge: The enhancing tumor (ET); the tumor
core (TC), that includes the necrotic area, the non-enhancing and enhancing
tumors; and the whole tumor (WT), represented by the edema.

Fig. 2. Manual annotation through expert raters. Shown are image patches with the
tumor structures that are annotated in the different modalities (top left) and the final
labels for the whole dataset (right). Image patches show from left to right: the whole
tumor visible in FLAIR (a), the tumor core visible in T2 (b), the enhancing tumor
structures visible in T1c (blue), surrounding the cystic/necrotic components of the
core (green) (c). Segmentations are combined to generate the final labels of the tumor
structures (d): edema (yellow), non-enhancing solid core (red), necrotic/cystic core
(green), enhancing core(blue). (Figure taken from the BraTS IEEE TMI paper [4])

2.3 Training

The architecture was trained using the 285 cases from the training dataset,
without discriminating between the two categories of glioma, seeking to obtain
a robust model that could segment both lesions without difficulty. Our method’s
inputs are patches of size 363 that are extracted randomly, making sure that
50% of them are centered at a voxel labeled as tumor, as explained in section
2.1. The data is normalized individually per MRI volume by setting the mean to
0 and the variance to 1. Data augmentation is made to avoid overfitting of the
model due to the small size of the training dataset, and it is performed on the
fly to prevent memory issues. The process is made by reflecting randomly chosen
volumes along the sagittal axis. To train the method, the learning rate was set
to 1e− 4 and it remained constant during the 35 epochs. We use sparse softmax
cross entropy loss and minimize it using the Adam optimizer with β1 = 0.9,
β2 = 0.999 and ε = 1e− 8.



2.4 Validation and test

To test the model, the 46 volumes from the validation dataset and the 146 from
the test dataset were evaluated with the network. The only pre-processing step
applied to the data is the individual normalization per MRI described in section
2.3. In these stages, the patches are extracted at uniform intervals in the images.
No additional post-processing was done to the volumes. Lastly, the whole volume
was reconstructed using the segmented patches. In this testing stage a new MRI
takes less than 15 seconds in producing the prediction.

2.5 Evaluation Metrics

We consider the four complementary performance metrics proposed in the chal-
lenge for quantitative evaluation.

Dice Coefficient: for every model, the Dice-Coefficient (Equation 1) is calcu-
lated as performance metric. This measure states the similarity between clinical
ground truth annotations and the output segmentation of the model. Afterwards,
we calculate the average of the results to obtain the overall dice coefficient of
the models.

DC =
2|A ∩B|
|A|+ |B|

(1)

Hausdorff Distance: the Hausdorff Distance (Equation 2) is mathematically
defined as the maximum distance of a set to the nearest point in the other set [18].
In other words, it measures how close are the segmentation’s and the expected
output’s boundaries. This metric is used to assess the alignment between the
contours of the segmentations.

H(A,B) = max{min{d(A,B)}} (2)

Sensitivity and Specificity: are statistical measures used to evaluate the
behavior of the predictions and the proportions of True Positives (TP ), False
Negatives (FN), False Positives (FP ) and True Negatives (TN). The Sensitivity
(Equation 3), also known as True Positive Rate, gives the proportion of true
positives predicted correctly. The specificity (Equation 4), also known as True
Negative Rate, measures how well the true negatives are predicted.

Sensitivity = TPR =
TP

TP + FN
(3)

Specificity = TNR =
TN

TN + FP
(4)



3 Experimental Results

we performed extensive experiments to find the optimal number of paths needed
to solve this task. We tested the architecture for three, four and five pathways
with multiple resolutions in the validation dataset. In Table 1 we present the
results:

Table 1. Dice coefficient, sensitivity, specificity and Hausdorff distance of our neural
network for Enhanced Tumor, Whole Tumor and Core Tumor; evaluated over the
validation dataset from BraTS 2017.

Dice Sensitivity Specificity Hausdorff
Enh. Wh. Core Enh. Wh. Core Enh. Wh. Core Enh. Wh. Core

3 paths 0,68 0,86 0,69 0.74 0.87 0.69 0.99 0.99 0.99 10.34 14.74 14.12

4 paths 0,71 0,88 0,68 0.72 0.86 0.68 0.99 0.99 0.99 6,12 9,63 11,38

5 paths 0,68 0,88 0,69 0.74 0.86 0.69 0.99 0.99 0.99 7.43 7.99 12.86

As demonstrated by Table 1, the four-pathway architecture obtains the best
results in the previous experiment. The 5 path approach (with additional down-
samples of three, four, six and eight) gets a similar performance with a minimal
decrease. However, this method uses more trainable parameters and therefore
takes longer to train. For this reason, we choose the four-pathway architecture
that takes advantage of a multi-resolution approach, in order to get information
of the location of the tumor and, at the same time, acquire local data that helps
to differentiate the structures of the lesions in a reasonable time. In Table 2
we present the results on the training, validation and test datasets using the
evaluation metrics explained in 2.5:

Table 2. Dice coefficient, sensitivity, specificity and Hausdorff distance of our neural
network for Enhanced Tumor, Whole Tumor and Core Tumor; evaluated over the
training, validation and test datasets from BraTS 2017. Note: Sensitivity and specificity
measures were not provided for the evaluation in test dataset.

Dice Sensitivity Specificity Hausdorff
Enh. Wh. Core Enh. Wh. Core Enh. Wh. Core Enh. Wh. Core

Train 0,74 0,89 0,87 0.83 0.91 0.89 0.99 0.99 0.99 5,85 15,99 11,18

Val 0,71 0,88 0,68 0.72 0.86 0.68 0.99 0.99 0.99 6,12 9,63 11,38

Test 0,65 0,86 0,67 - - - - - - 51,70 10,39 36,20

Overall, our approach reached a competitive result. The usage of different
levels of resolution and fully connected layers proved to be an effective way to
obtain a detailed and accurately located segmentation of brain tumors in MRIs.
This behavior is exhibited in the average dice coefficients obtained for the whole
tumor segmentation task, as shown on Table 2. Our method reached a result of



89% in the training phase. Furthermore, when introducing completely new data
we get a similar performance (88% in validation and 86% in test). The minimal
change between these results demonstrates the robustness of the model.

Table 3. Visual comparison between the ground truth against some results obtained
by our neural network

Ground truth Our segmentation

The sensitivity and specificity were also measured for the train and validation
datasets. We obtain high sensitivity results, ranging between 68% and 91% for
all the evaluated tasks. Therefore, the method has a good recall. In medical prob-
lems, this is a specially important measure due to the interest in finding every
ailment affecting the patient, in order to prevent any complication. Addition-



ally, our neural network obtains a specificity of 99% for all the evaluated tasks
in both training and validation, which shows that the method is able to predict
with great certainty which parts of the brain are healthy. Another strong point
of our network is the ability to produce fast segmentations, as it takes around
fifteen seconds to process the four modalities and produce the new segmentation.
In critical and time-sensitive clinical situations, the efficiency of our approach
represents a faster diagnosis and a higher probability of survival for the patient.

Table 4. Dice coefficient, sensitivity, specificity and Hausdorff distance of our neural
network and the Deepmedic implementation for Enhanced Tumor, Whole Tumor and
Core Tumor; evaluated over validation datasets from BraTS 2017.

Dice Sensitivity Specificity Hausdorff
Enh. Wh. Cor. Enh. Wh. Cor. Enh. Wh. Cor. Enh. Wh. Cor.

Deepmedic 0.69 0.86 0.68 0.72 0.86 0.64 0.99 0.99 0.99 10.1 25.0 17.5

Ours 0,71 0,88 0,68 0.72 0.86 0.68 0.99 0.99 0.99 6,12 9,63 11,38

Table 4 shows a comparison between the results of our architecture against
the implementation of Deepmedic (available in [13]) over the validation dataset
of BraTS 2017. Our method reached a better performance in all the evaluated
metrics, the high improvement in the Enhancing tumor and Whole tumor tasks
(2 points in Dice coefficient measure) demonstrates that our approach is not
only able to locate the area of the tumor better, but also has a greater capacity
to identify correctly the internal structures of the lesion, information that can
be vital when performing a diagnosis and treatment of a patient.

In Table 3, we present some examples of the predictions against the ground
truth. It is important to emphasize the precision with which our method dif-
ferentiates the structures that compose the tumor. We can see its capability to
predict the exact area where the patient’s tumor occurs with minimal noisy ac-
tivations in other areas. In Table 5, we present some examples of the predictions
against the ground truth that show the limitations of our method. We found
that it can identify and locate the tumor with a high degree of precision in all
the evaluated cases. However, when differentiating between the inner parts of
the tumor, it falls short in some examples. In general, as can be seen in Table
5, the prediction is correct for the location of the affected region, but it predicts
false positives in the contours of the specific structures. Taking into account the
difficulty of the problem, where even for the experts it is complicated to locate
the tumor accurately and even more to identify their internal parts, our method
obtains an robust performance in a reduced period time.



Table 5. Visual comparison between the ground truth against the worst results ob-
tained by our neural network

Ground truth Our segmentation

4 Conclusion

We propose a volumetric multimodality neural network. Our method receives as
input 3D patches extracted from the dataset images. The architecture consist of
four identical parallel pathways, to extract features on four specific resolution
levels, each one with six convolutional layers and two residual connections. We
then combine their results using fully connected layers. Finally, every pixel is
classified into background or one of the three categories belonging to the tumor.
In this paper, we have presented results in the 2017 BraTS Challenge dataset
(Training, Validation and Test) reaching an average dice coefficient of 89% over



training dataset, 88% over validation dataset and 86% over test dataset for the
whole tumor segmentation task (Table 2).

The use of multiple resolutions has proven to be an effective way to extract
detailed information and coarse, semantic data from the images. However, most
methods use a series of consecutive blocks and pooling operations for that pur-
pose. As a consequence, deeper blocks lose some of the fine information obtained
in early stages. In this paper, we showed that the use of parallel independent
blocks to extract different levels of features allows us to obtain accurate and
detailed results. Additionally, the use of a patch-wise approach has proven to
be useful to deal with large amounts of data, which are highly imbalanced and
need to be processed simultaneously to avoid the loss of 3D and multimodality
information.
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