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Abstract. We present Convolutional Oriented Boundaries (COB), which
produces multiscale oriented contours and region hierarchies starting
from generic image classification Convolutional Neural Networks (CNNs).
COB is computationally efficient, because it requires a single CNN for-
ward pass for contour detection and it uses a novel sparse boundary
representation for hierarchical segmentation; it gives a significant leap
in performance over the state-of-the-art, and it generalizes very well to
unseen categories and datasets. Particularly, we show that learning to
estimate not only contour strength but also orientation provides more
accurate results. We perform extensive experiments on BSDS, PASCAL
Context, PASCAL Segmentation, and MS-COCO, showing that COB
provides state-of-the-art contours, region hierarchies, and object propos-
als in all datasets.

Keywords: Contour detection, contour orientation estimation, hierar-
chical image segmentation, object proposals

1 Introduction

The adoption of Convolutional Neural Networks (CNNs) has caused a profound
change and a large leap forward in performance throughout the majority of fields
in computer vision. In the case of a traditionally category-agnostic field such as
contour detection, it has recently fostered the appearance of systems [1–6] that
rely on large-scale category-specific information in the form of deep architectures
pre-trained on Imagenet for image classification [7–10].

This paper proposes Convolutional Oriented Boundaries (COB), a generic
CNN architecture that allows end-to-end learning of multiscale oriented con-
tours, and we show how it translates top performing base CNN networks into
high-quality contours; allowing to bring future improvements in base CNN archi-
tectures into semantic grouping. We then propose a sparse boundary represen-
tation for efficient construction of hierarchical regions from the contour signal.
Our overall approach is both efficient (it runs in 0.8 seconds per image) and
highly accurate (it produces state-of-the-art contours and regions on PASCAL
and on the BSDS). Figure 1 shows an overview of our system.

For the last fifteen years, the Berkeley Segmentation Dataset and Benchmark
(BSDS) [11] has been the experimental testbed of choice for the study of bound-
ary detection and image segmentation. However, the current large-capacity and
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Fig. 1. Overview of COB: From a single pass of a base CNN, we obtain multiscale
oriented contours. We combine them to build Ultrametric Contour Maps (UCMs) at
different scales and fuse them into a single hierarchical segmentation structure.

very accurate models have underlined the limitations of the BSDS as the pri-
mary benchmark for grouping. Its 300 train images are inadequate for training
systems with tens of millions of parameters and, critically, current state-of-the-
art techniques are reaching human performance for boundary detection on its
200 test images.

In terms of scale and difficulty, the next natural frontier for perceptual group-
ing is the PASCAL VOC dataset [12], an influential benchmark for image clas-
sification, object detection, and semantic segmentation which has a trainval set
with more than 10 000 challenging and varied images. A first step in that di-
rection was taken by Hariharan et al. [13], who annotated the VOC dataset for
category-specific boundary detection on the foreground objects. More recently,
the PASCAL Context dataset [14] extended this annotation effort to all the
background categories, providing thus fully-parsed images which are a direct
VOC counterpart to the human ground-truth of the BSDS. In this direction,
this paper investigates the transition from the BSDS to PASCAL Context in the
evaluation of image segmentation.

We derive valuable insights from studying perceptual grouping in a larger
and more challenging empirical framework. Among them, we observe that COB
leverages increasingly deeper state-of-the-art architectures, such as the recent
Residual Networks [10], to produce improved results. This indicates that our
approach is generic and can directly benefit from future advances in CNNs. We
also observe that, in PASCAL, the globalization strategy of contour strength by
spectral graph partitioning proposed in [15] and used in state-of-the-art meth-
ods [16, 1] is unnecessary in the presence of the high-level knowledge conveyed
by pre-trained CNNs and oriented contours, thus removing a significant compu-
tational bottleneck for high-quality contours. Overall, COB generates state-of-
the-art contours and regions on PASCAL Context and on the BSDS while being
computationally very efficient: it runs in 0.8 seconds per image.
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We also conduct comprehensive experiments demonstrating the interest of
COB for downstream recognition applications. We use our hierarchical regions
as input to the combinatorial grouping algorithm of [16] and obtain state-of-the-
art segmented object proposals on PASCAL Segmentation 2012 by a significant
margin. Furthermore, we provide empirical evidence for the generalization power
of COB by evaluating our object proposals without any retraining in the even
larger and more challenging MS-COCO dataset, where we also report a large
improvement in performance with respect to the state of the art. Our efforts
on segmentation through CNNs have also found application in retinal image
segmentation [17], obtaining state-of-the-art and super-human performance in
vessel and optic disc segmentation, which further highlights their generality.

The COB code, pre-computed results, pre-trained models, and benchmarks
are publicly available at www.vision.ee.ethz.ch/~cvlsegmentation/.

2 Related Work

The latest wave of contour detectors takes advantage of deep learning to obtain
state-of-the-art results [1–6, 18]. Ganin and Lempitsky [6] use a deep architec-
ture to extract features of image patches. They approach contour detection as a
multiclass classification task, by matching the extracted features to predefined
ground-truth features. The authors of [3, 4] make use of features generated by
pre-trained CNNs to regress contours. They prove that object-level information
provides powerful cues for the prediction of contours. Shen et al. [5] learn deep
features using shape information. Xie and Tu [2] provide an end-to-end deep
framework to boost the efficiency and accuracy of contour detection, using con-
volutional feature maps and a novel loss function. Kokkinos [1] builds upon [2]
and improves the results by tuning the loss function, running the detector at
multiple scales, and adding globalization. COB is different from this previous
work in that we obtain multiscale information in a single pass of the network on
the whole image, it combines the per-pixel classification with contour orientation
estimation, and its output is richer than a linear combination of cues at different
scales.

At the core of all these deep learning approaches, lies a base CNN, starting
from the seminal AlexNet [7] (8 layers), through the more complex VGGNet [9]
(16 layers) and inception architecture of GoogLeNet [8] (22 layers), to the very
recent and very deep ResNets [10] (up to 1001 layers). Image classification re-
sults, which originally motivated these architectures, have been continuously
improved by exploring deeper and more complex networks. In this work, we
present results both using VGGNet and ResNet, showing that COB is modular
and can incorporate and benefit from future improvements in the base CNN.

Recent work has also explored the weakly supervised or unsupervised learn-
ing of contours: Khoreva et al. [19] learn from the results of generic contour
detectors coupled with object detectors; and Li et al. [20] train contour detec-
tors from motion boundaries acquired from video sequences. Yang et al. [21] use
conditional random fields to refine the inaccurately localized boundary annota-
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tions of PASCAL. Our approach uses full supervision from BSDS and PASCAL
Context for contour localization and orientation.

COB exploits the duality between contour detection and segmentation hi-
erarchies, initially studied by Najman and Schmitt [22]. Arbeláez et al. [15]
showed its usefulness for jointly optimizing contours and regions. Pont-Tuset et
al. [16] leveraged multi-resolution contour detection and proved its interest also
for generating object proposals. We differentiate from these approaches in two
aspects. First, our sparse boundary representation translates into a clean and
highly efficient implementation of hierarchical segmentation. Second, by lever-
aging high-level knowledge from the CNNs in the estimation of contour strength
and orientation, our method benefits naturally from global information, which
allows bypassing the globalization step (output of normalized cuts), a bottleneck
in terms of computational cost, but a cornerstone of previous aproaches.

3 Deep Multiscale Oriented Contours

CNNs are by construction multi-scale feature extractors. If one examines the
standard architecture of a CNN consisting of convolutional and spatial pooling
layers, it becomes clear that as we move deeper, feature maps capture more
global information due to the decrease in resolution. For contour detection, this
architecture implies local and fine-scale contours at shallow levels, coarser spatial
resolution and larger receptive fields for the units when going deeper into the
network and, consequently, more global information for predicting boundary
strength and orientation. CNNs have therefore a built-in globalization strategy
for contour detection, analogous to the hand-engineered globalization of contour
strength through spectral graph partitioning in [15, 16].

Figure 2 depicts how we make use of information provided by the intermediate
layers of a CNN to detect contours and their orientations at multiple scales. Dif-
ferent groups of feature maps contain different, scale-specific information, which
we combine to build a multiscale oriented contour detector. The remainder of
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Fig. 2. Our deep learning architecture (best viewed in color). The connections
show the different stages that are used to generate the multiscale contours. Orientations
further require additional convolutional layers in multiple stages of the network.
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this section is devoted to introducing the recent approaches to contour detection
using deep learning, to presenting our CNN architecture to produce contour de-
tection at different scales, and to explain how we estimate the orientation of the
edges; all in a single CNN forward pass at the image level.

Training deep contour detectors: The recent success of [2] is based on a
CNN to accurately regress the contours of an image. Within this framework, the
idea of employing a neural network in an image-to-image fashion without any
post-processing has proven successful and serves right now as the state-of-the-art
for the task of contour detection. Their network, HED, produces scale-specific
contour images (side outputs) for different scales of a network, and combines their
activations linearly to produce a contour probability map. Using the notation of
the authors, we denote the training dataset by S = {(Xn, Yn) , n = 1, . . . , N},
with Xn being the input image and Yn = {y(n)

j , j = 1, . . . , |Xn|}, y(n)
j ∈ {0, 1}

the predicted pixelwise labels. For simplicity, we drop the subscript n. Each of
the M side outputs minimizes the objective function:

`
(m)
side

(
W,w(m)

)
=−β

∑
j∈Y+

logP
(
yj =1|X;W,w(m)

)
−(1−β)

∑
j∈Y−

logP
(
yj =0|X;W,w(m)

)
(1)

where `
(m)
side is the loss function for scale m ∈ {1, . . . ,M}, W denotes the stan-

dard set of parameters of the CNN, and {w(m),m = 1, . . . ,M} the correspond-
ing weights of the the m-th side output. The multiplier β is used to handle
the imbalance of the substantially greater number of background compared
to contour pixels. Y+ and Y− denote the contour and background sets of the
ground-truth Y , respectively. The probability P (·) is obtained by applying a

sigmoid σ (·) to the activations of the side outputs Â
(m)
side = {a(m)

j , j = 1, . . . , |Y |}.
The activations are finally fused linearly, as: Ŷfuse = σ

(
ΣM

m=1hmÂ
(m)
side

)
where

h = {hm,m = 1, . . . ,M} are the fusion weights. The fusion output is also trained
to resemble the ground-truth applying the same loss function of Equation 1, by
optimizing the complete set of parameters, including the fusion weights h. In
the rest of the paper we use the class-balancing cross-entropy loss function of
Equation 1.

Multiscale contours: We finetune the 50-layer ResNet [10] for the task of
contour detection. The fully connected layers used for classification are removed,
and so are the batch normalization layers, since we operate on one image per
iteration. Therefore, the network consists mainly of convolutional layers coupled
with ReLU activations, divided into 5 stages. We will refer to this architecture
as the “base CNN” of our implementation. Each stage is handled as a different
scale, since it contains feature maps of a similar size. At the end of a stage, there
is a max pooling layer, which reduces the dimensions of the produced feature
maps to a half. As discussed before, the CNN naturally contains multiscale
information, which we exploit to build a multiscale contour regressor.

We separately supervise the output of the last layer of each stage (side acti-
vation), comparing it to the ground truth using the loss function of Equation 1.
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This way, we enforce each side activation to produce an intermediate contour
map at different resolution. The idea of supervising intermediate parts of a CNN
has successfully been used in previous approaches, for a variety of tasks [8, 23,
2]. In the 5-scale base CNN illustrated in Figure 2, we linearly combine the side
activations of the 4 finest and 4 coarsest scales to a fine-scale and a coarse-scale
output (Ŷfine and Ŷcoarse, respectively) with trainable weights. The finer scale
contains better localized contours, whereas the coarse scale leads to less noisy
detections. To train the two sets of weights of the linear combinations, we freeze
the pre-trained weights of the base CNN.

Estimation of Contour Orientations: In order to predict accurate contour
orientations, we propose an extension of the CNN that we use as multiscale
contour detector. We define the task as pixel-wise image-to-image multiscale
classification into K bins. We connect K different branches (sub-networks) to
the base network, each of which is associated with one orientation bin, and has
access to feature maps that are generated from the intermediate convolutional
layers at M different scales. We assign the parts of the CNN associated with
each orientation a different task than the base network: classify the pixels of the
contours that match a specific orientation. In order to design these orientation-
specific subtasks, we classify each pixel of the human contour annotations into
K different orientations. The orientation of each contour pixel is obtained by
approximating the ground-truth boundaries with polygons, and assigning each
pixel the orientation of the closest polygonal segment, as shown in Figure 5. As
in the case of multiscale contours, the weights of the base network remain frozen
when training these sub-networks.

Each sub-network consists of M convolutional layers, each of them appended
on different scales of the base network. Thus we need M ∗K additional layers,
namely conv scale m orient k, with k= 1, . . . ,K and m= 1, . . . ,M . In our
setup, we use K = 8 and M = 5. All K orientations are regressed in parallel,
and since they are associated with a certain angle, we post-process them to
obtain the orientation map. Specifically, the orientation map is obtained as:

O(x, y) = T
(

arg max
k

Bk (x, y)

)
, k = 1, . . . ,K (2)

where Bk(x, y) denotes the response of the k-th orientation bin of the CNN at
the pixels with coordinates (x, y) and T (·) is the transformation function which
associates each bin with its central angle. For the cases where two neighboring
bins lead to strong responses, we compute the angle as their weighted average. At
pixels where there is no response for any of the orientations, we assign random
values between 0 and π, not to bias the orientations. The different orientations
as well as the resulting orientation map (color-coded) are illustrated in Figure 3.

In [15, 24, 16] the orientations are computed by means of local gradient filters.
In Section 5 we show that our learned orientations are significantly more accurate
and lead to more better region segmentations.
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Fig. 3. Illustration of contour orientation learning. Row 1 shows the responses Bk for 4
out of the 8 orientation bins. Row 2, from left to right: original image, contour strength,
learned orientation map into 8 orientations, and hierarchical boundaries.

4 Fast Hierarchical Regions

This section is devoted to building an efficient hierarchical image segmentation
algorithm from the multiscale contours and the orientations extracted in the pre-
vious section. We build on the concept of Ultrametric Contour Map (UCM) [15],
which transforms a contour detection probability map into a hierarchical bound-
ary map, which gets partitions at different granularities when thresholding at
various contour strength values. Despite the success of UCMs, their low speed
significantly limits their applicability.

In the remainder of this section we first describe an alternative representation
of an image partition that allows us to reduce the computation time of multiscale
UCMs by an order of magnitude, to less than one second. Then, we present the
global algorithm to build a hierarchy of regions from the multiscale contours
and the orientations presented in Section 3. As we will show in the experimental
section, the resulting algorithm improves the state of the art significantly, at a
fraction of the computational time of [16].

Sparse Boundary Representation of Hierarchies of Regions: An image
partition is a clustering of the set of pixels into different sets, which we call
regions. The most straightforward way of representing it in a computer is by a
matrix of labels, as in the example in Figure 4(a), with three regions on an image
of size 2×3. The boundaries of this partition are the edge elements, or edgels, be-
tween the pixels with different labels (highlighted in red). We can assign different
strengths to these boundaries (thicknesses of the red lines), which indicate the
confidence of that piece of being a true boundary. By iteratively erasing these
boundaries in order of increasing strength we obtain different partitions, which
we call hierarchy of regions, or Ultrametric Contour Maps.

These boundaries are usually stored in the boundary grid (Figure 4(b)), a
matrix of double the size of the image (minus one), in which the odd coordinates
represent pixels (gray areas), and the positions in between represent boundaries
(red numbers) and junctions (crossed positions).
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UCMs use this representation to store their boundary strength values, that
is, each boundary position stores the threshold value beyond which that edgel
disappears and the two neighboring regions merge. This way, simply binarizing
a UCM we have a partition represented as a boundary grid.

This representation, while useful during prototyping, becomes very inefficient
at run time, where the percentage of activated boundaries is very sparse. Not
only are we wasting memory by storing those empty boundaries, but it also
makes operating on them very inefficient by having to sweep over the entire
matrix to perform a modification on a single boundary piece.

Inspired by how sparse matrices are handled, we designed the sparse bound-
aries representation (Figure 4(c)). It stores a look-up table for pairs of neigboring
regions, their boundary strength, and the list of coordinates the boundary oc-
cupies. Apart from being more compact in terms of memory, this representation
enables efficient operations on specific pieces of a boundary, since one only needs
to perform a search in the look-up table and scan the activated coordinates;
instead of having to sweep the whole boundary grid.

Fast Hierarchies from Multiscale Oriented Contours: The deep CNN
presented in Section 3 provides different levels of detail for the image contours.
A linear combination of the layers is the straightforward way of providing a single
contour signal [2]. The approach in this work is to combine the region hierarchies
extracted from the contour signals at each layer instead of the contours directly.
We were inspired by the framework proposed in [16], in which a UCM is obtained
from contours computed at different image scales and then combined in a single
hierarchy; but instead we use the different contour outputs that are computed
in a single pass of the proposed CNN architecture.

A drawback of the original framework [16] is that the manipulation of the
hierarchies is very slow (in the order of seconds), so the operations on the UCMs
had to be discretized and performed at a low number of contour strengths. By
using the fast sparse boundary representation, we can operate on all contour
strengths, yielding better results at a fraction of the original cost. Moreover,
we use the learned contour orientations for the computation of the Oriented
Watershed Transform (OWT), further boosting performance.
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5 Experiments

This section presents the empirical evidence that supports our approach. First,
Section 5.1 explores the ablated and baseline techniques studied to isolate and
quantify the improvements due to different components of our system. Then
Section 5.2, Section 5.3, and Section 5.4 compare our results against the state-of-
the-art in terms of contour orientation estimation, generic image segmentation,
and the application to object proposals, respectively. In all three cases, we obtain
the best results to date by a significant margin. Finally, Section 5.5 analyzes the
gain in speed achieved mainly by the use of our sparse boundaries representation.

We extend the main BSDS benchmarks to the PASCAL Context dataset [14],
which contains carefully localized pixelwise semantic annotations for the entire
image on the PASCAL VOC 2010 detection trainval set. This results in 459 se-
mantic categories across 10 103 images, which is an order of magnitude (20×)
larger than the BSDS. In order to allow training and optimization of large ca-
pacity models, we split the data into train, validation, and test sets as follows:
VOC train corresponds to the official PASCAL Context train with 4 998 images,
VOC val corresponds to half the official PASCAL Context validation set with
2 607 images and VOC test corresponds to the second half with 2 498 images.
In the remainder of the paper, we refer to this dataset division. Note that, in
this setting, the notion of boundary is defined as separation between different
semantic categories and not their parts, in contrast to the BSDS.

We used the publicly available Caffe [25] framework for training and test-
ing CNNs, and all the state-of-the-art results are computed using the publicly-
available code provided by the respective authors.

5.1 Control Experiments/Ablation Analysis

This section presents the control experiments and ablation analysis to assess
the performance of all subsystems of our method. We train on VOC train, and
evaluate on VOC val set. We report the standard F-measure at Optimal Dataset
Scale (ODS) and Optimal Image Scale (OIS), as well as the Average Precision
(AP), both evaluating boundaries (Fb [26]) and regions (Fop [27]).

Table 1 shows the evaluation results of the different variants, highlighting
whether we include globalization and/or trained orientations. As a first baseline,
we test the performance of MCG [16], which uses Structured Edges [24] as input
contour signal, and denote it MCG [16]. We then substitute SE by the newer
HED [2], trained on VOC train as input contours and denote it MCG-HED.
Note that the aforementioned baselines require multiple passes of the contour
detector (3 different scales).

In the direction of using the side outputs of the base CNN architecture as mul-
tiscale contour detections in one pass, we tested the baseline of naively taking the
5 side outputs directly as the contour detections. We trained both VGGNet [9]
and ResNet50 [10] on VOC train and combined the 5 side outputs with our fast
hierarchical regions of Section 4 (VGGNet-Side and ResNet50-Side).
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Boundaries - Fb Regions - Fop

Method Global. Orient. ODS OIS AP ODS OIS AP

MCG [16] 3 7 0.548 0.594 0.519 0.355 0.419 0.263
MCG-HED 3 7 0.691 0.727 0.693 0.459 0.520 0.374

VGGNet-Side 3 7 0.644 0.683 0.664 0.439 0.505 0.351
ResNet50-Side 3 7 0.676 0.711 0.681 0.456 0.521 0.374

Ours (VGGNet) 7 3 0.705 0.735 0.741 0.466 0.533 0.384

Ours (ResNet50) 7 7 0.734 0.767 0.757 0.475 0.545 0.405
Ours (ResNet50) 3 7 0.726 0.759 0.725 0.461 0.531 0.395
Ours (ResNet50) 3 3 0.732 0.763 0.731 0.481 0.554 0.418
Ours (ResNet50) 7 3 0.737 0.768 0.758 0.483 0.553 0.417

Table 1. Ablation analysis on VOC val :
Comparison of different ablated versions of our
system.
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We finally evaluate different variants of our system, as presented in Section 3.
We first compare our system with two different base architectures: Ours(VGGNet)
and Ours(ResNet50). We train the base networks for 30000 iterations, with
stochastic gradient descent and a momentum of 0.9. We observe that the deeper
architecture of ResNet translates into better boundaries and regions.

We then evaluate the influence of our trained orientations and globalization,
by testing the four possible combinations (the orientations are further evaluated
in next section). Our method using ResNet50 together with trained orientations
leads to the best results both for boundaries and for regions. The experiments
also show that, when coupled with trained orientations, globalization even de-
creases performance, so we can safely remove it and get a significant speed up.
Our technique with trained orientations and without globalization is therefore
selected as our final system and will be referred to in the sequel as Convolutional
Oriented Boundaries (COB).

5.2 Contour Orientation

We evaluate contour orientation results by the classification accuracy into 8
different orientations, to isolate their performance from the global system. We
compute the ground-truth orientations as depicted in Figure 5 by means of
the sparse boundaries representation. We then sweep all ground-truth boundary
pixels and compare the estimated orientation with the ground-truth one. Since
the orientations are not well-balanced classes (much more horizontal and vertical
contours), we compute the classification accuracy per each of the 8 classes and
then compute the mean.

Figure 6 shows the classification accuracy with respect to the confidence of
the estimation. We compare our proposed technique against the local gradient
estimation used in previous literature [15, 24, 16]. As a baseline, we plot the result
a random guess of the orientations would get. We observe that our estimation is
significantly better than the previous approach. As a summary measure, we com-
pute the area under the curve of the accuracy (ours 58.6%, local gradients 41.2%,
random 12.5%), which corroborates the superior results from our technique.
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5.3 Generic Image Segmentation

We present our results for contour detection and generic image segmentation
on PASCAL Context [14] as well as on the BSDS500 [11], which is the most
established benchmark for perceptual grouping.

PASCAL Context: We train COB in the VOC train, and perform hyper-
parameter selection on VOC val. We report the final results on the unseen VOC
test when trained on VOC trainval, using the previously tuned hyper-parameters.
We compare our approach to several methods trained on the BSDS [24, 16, 28,
2] and we also retrain the current state-of-the-art contour detection methods
HED [2] and the recent CEDN [21] on VOC trainval using the code provided by
the respective authors.

Figure 7 presents the evaluation results of our method compared to the state-
of-the-art, which show that COB outperforms all others by a considerable margin
both in terms of boundaries and in terms of regions. The lower performance of
the methods trained on the BSDS quantifies the difficulty of the task when
moving to a larger and more challenging dataset.
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Method ODS OIS AP

COB 0.750 0.781 0.773
CEDN [21] 0.702 0.718 0.744
HED [2] 0.688 0.707 0.704
LEP-B [28] 0.570 0.636 0.547
HED-B [2] 0.557 0.588 0.518
MCG-B [16] 0.554 0.609 0.528
SE-B [24] 0.533 0.568 0.496

Regions - Fop

Method ODS OIS AP

COB 0.491 0.565 0.439
LEP-B [28] 0.399 0.461 0.304
MCG-B [16] 0.356 0.419 0.275

Fig. 7. PASCAL Context VOC test Evaluation: Precision-recall curves for eval-
uation of boundaries (Fb [26]), and regions (Fop [27]). Contours in dashed lines and
boundaries (from segmentation) in solid lines. ODS, OIS, and AP summary measures.

BSDS500: We retrain COB using only the 300 images of the trainval set of
the BSDS, after data augmentation as suggested in [2], keeping the architecture
decided in Section 5.1. For comparison to HED [2], we used the model that the
authors provide online. We also compare with CEDN [21], by evaluating the
results provided by the authors.

Figure 8 presents the evaluation results, which show that we also obtain
state-of-the-art results in this dataset. The smaller margins are in all likelihood
due to the fact that we almost reach human performance for the task of contour
detection on the BSDS, which motivates the shift to PASCAL Context to achieve
further progress in the field.
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Boundaries - Fb

Method ODS OIS AP

COB (Ours) 0.793 0.820 0.859
CEDN [21] 0.788 0.804 0.834
HED [2] 0.780 0.796 0.834
LEP [28] 0.757 0.793 0.828
MCG [16] 0.747 0.779 0.759
UCM [15] 0.726 0.760 0.727
ISCRA [29] 0.724 0.752 0.783
NCuts [30] 0.641 0.674 0.447
EGB [31] 0.636 0.674 0.581
MShift [32] 0.601 0.644 0.493

Regions - Fop

Method ODS OIS AP

COB (Ours) 0.419 0.478 0.343
LEP [28] 0.417 0.468 0.334
MCG [16] 0.380 0.433 0.271
ISCRA [29] 0.352 0.418 0.275
UCM [15] 0.348 0.385 0.235
MShift [32] 0.229 0.292 0.122
NCuts [30] 0.213 0.270 0.096
EGB [31] 0.158 0.240 0.080

Fig. 8. BSDS500 Test Evaluation: Precision-recall curves for evaluation of bound-
aries (Fb [26]), and regions (Fop [27]). ODS, OIS, and AP summary measures.

5.4 Object Proposals

Object proposals are an integral part of current object detection and seman-
tic segmentation pipelines [33–35], as they provide a reduced search space on
locations, scales, and shapes over the image. This section evaluates COB as a
segmented proposal technique, when using our high-quality region hierarchies
in conjunction with the combinatorial grouping framework of [16]. We compare
against the more recent techniques POISE [36], MCG and SCG [16], LPO [37],
GOP [38], SeSe [39], GLS [40], and RIGOR [41]. Recent thorough comparisons
of object proposal generation methods can be found in [42, 43].

We perform experiments on the PASCAL 2012 Segmentation dataset [12]
and on the bigger and more challenging MS-COCO [44] (val set). The hierar-
chies and combinatorial grouping are trained on PASCAL Context. To assess
the generalization capability, we evaluate on MS-COCO, which contains a large
number of previously unseen categories, without further retraining.

Figure 9 shows the average recall [42] with respect to the number of object
proposals. In PASCAL Segmentation, the absolute gap of improvement of COB is
at least of +13% with the second-best technique, and consistent in all the range
of number of proposals. In MS-COCO, even though we did not train on any
MS-COCO image, the percentage of absolute improvement is also consistently
+13% at least. This shows that our contours, regions, and proposals are properly
learning a generic concept of object rather than some specific categories.

5.5 Efficiency Analysis

Contour detection and image segmentation, as a preprocessing step towards high-
level applications, need to be computationally efficient. The previous state-of-
the-art in hierarchical image segmentation [16, 15] was of limited use in practice
due to its computational load.

As a core in our system, the forward pass of our network to compute the con-
tour strength and 8 orientations takes 0.28 seconds on a NVidia Titan X GPU.
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Fig. 9. Object proposals evaluation on PASCAL Segmentation val and MS-
COCO val: Dashed lines refer to methods that do not provide a ranked set of pro-
posals, but they need to be reparameterized.

Table 2 shows the timing comparison between the full system COB (Ours) and
some related baselines on PASCAL Context. We divide the timing into differ-
ent relevant parts, namely, the contour detection step, the Oriented Watershed
Transform (OWT) and Ultrametric Contour Map (UCM) computation, and the
globalization (normalized cuts) step.

Steps (1) MCG [16] (2) MCG-HED (3) Fast UCMs (4) COB (Ours)

Contour Detection 3.08 0.39* 0.39* 0.28*
OWT and UCM 11.33 11.58 1.63 0.51
Globalization 9.96 9.97 9.92 0.00

Total Time 24.37 21.94 11.94 0.79

Table 2. Timing experiments: Comparing our approach to different baselines. Times
computed using a GPU are marked with an asterisk.

Column (1) shows the timing for the original MCG [16], which uses Struc-
tured Edges (SE) [24]. As a first baseline, Column (2) displays the timing of
MCG if we naively substitute SE by HED [2] at the three scales (running on a
GPU). By applying the sparse boundaries representation we reduce the UCM
and OWT time from 11.58 to 1.63 seconds (Column (3)). Our final technique
COB, in which we remove the globalization step, computes the three scales in
one pass and add contour orientations, takes 0.79 seconds in mean. Overall,
comparing to previous state-of-the-art, we get a significant improvement at a
fraction of the computation time (24.37 to 0.79 seconds).

Qualitative Results: Figure 10 shows some qualitative results of our hierarchi-
cal contours. Please note that COB is capable of correctly distinguishing between
internal contours (e.g. cat or dog) and external, semantical, object boundaries.
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Fig. 10. Qualitative results on PASCAL - Hierarchical Regions. Row 1: original
images, Row 2: ground-truth boundaries, Row 3: hierarchical regions with COB.

6 Conclusions

In this work, we have developed an approach to detect contours at multiple
scales, together with their orientations, in a single forward pass of a convolutional
neural network. We provide a fast framework for generating region hierarchies
by efficiently combining multiscale oriented contour detections, thanks to a new
sparse boundary representation. We shift from the BSDS to PASCAL in the
evaluation to unwind all the potential of data-hungry methods such as CNNs
and by observing that the performance on the BSDS is close to saturation.

Our technique achieves state-of-the-art performance by a significant margin
for contour detection, the estimation of their orientation, generic image segmen-
tation, and object proposals. We show that our architecture is modular by using
two different CNN base architectures, which suggests that it will be able to trans-
fer further improvements in CNN base architectures to perceptual grouping. We
also show that our method does not require globalization, which was a speed
bottleneck in previous approaches.

All our code, CNN models, pre-computed results, dataset splits, and bench-
marks are publicly available at www.vision.ee.ethz.ch/~cvlsegmentation/.
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13. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours
from inverse detectors. In: ICCV. (2011)

14. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R.,
Yuille, A.: The role of context for object detection and semantic segmentation in
the wild. In: CVPR. (2014)
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