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Abstract. The automated analysis of medical images requires robust
and accurate algorithms that address the inherent challenges of identify-
ing heterogeneous anatomical and pathological structures, such as brain
tumors, in large volumetric images. In this paper, we present Cerberus, a
single lightweight convolutional neural network model for the segmenta-
tion of fine-grained brain tumor regions in multichannel MRIs. Cerberus
has an encoder-decoder architecture that takes advantage of a shared
encoding phase to learn common representations for these regions and,
then, uses specialized decoders to produce detailed segmentations. Cer-
berus learns to combine the weights learned for each category to produce
a final multi-label segmentation. We evaluate our approach on the offi-
cial test set of the Brain Tumor Segmentation Challenge 2020, and we
obtain dice scores of 0.807 for enhancing tumor, 0.867 for whole tumor
and 0.826 for tumor core.
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1 Introduction

The use of Magnetic Resonance Imaging (MRI) for detection, treatment planning
and monitoring of brain tumors has spurred interest in automatic segmentation
of these structures. However, this task comprises many challenges, including
the difficulty in annotating tumors with irregular shapes and appearances in
large diagnostic images acquired through different protocols and scanners. Con-
sequently, the availability of datasets for this task is highly restricted. These
limitations call for automated algorithms that are robust to class imbalance and
reduced training sets.

The recent success of Deep Neural Networks for segmentation tasks in natural
images has promoted the development of specialized approaches for processing
volumetric medical data. One notable example is U-Net [1], an encoder-decoder
architecture that is used as foundation in most methods for biomedical segmen-
tation. For instance, a recent variation of the 3D U-Net, dubbed No New-Net
[12], achieved the second place on the segmentation task of the Brain Tumor
Segmentation (BraTS) challenge [14, 5, 4, 2, 3]. This method uses the standard
U-Net with an extensive training procedure that includes cross-validation of five
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models aided with additional annotated data from the same task in the Medical
Segmentation Decathlon challenge [15].

In the field of brain tumor segmentation, a common approach is the use of a
cascade of networks that first segment the coarsest structures, and then use those
results as input for the following networks [16, 13]. This approach specializes each
network to a specific target, allowing the detection of objects with varying char-
acteristics. However, cascaded networks necessarily require training more than
one architecture, which significantly increases the number of parameters and, in
most cases, hinders end-to-end training of the system. Deep Cascaded Attention
Network (DCAN) [18] attempts to address these issues by sharing a low-level
feature extractor followed by three independent encoder-decoder branches spe-
cialized for each brain region. The cascaded component is an attention mech-
anism that inputs the features of the branch for the coarsest categories to the
fine-grained ones. Another recent method [9] replaces complex cascades with a
multitask learning approach that employs two decoders at different scales for
the coarse and fine categories. In contrast, we present a single model with a ro-
bust backbone to extract rich features that can be used to obtained specialized
segmentations.

A second family of techniques focuses on reducing the computational cost
inherent to processing 3D data. Among the best performing methods in the
BraTS Challenge 2018 is DMFNet [7], a 3D encoder-decoder architecture that
uses dilated multi-fiber units [8] to limit the number of parameters and FLOPS.
In [6], Reversible Layers [10] are introduced to the No-New-Net architecture as an
alternative to reduce memory consumption. Instead of storing all the activations
in the forward pass, they are re-calculated during the backward pass using the
next layer’s activations. This strategy allows to process complete volumes rather
than patches, but the performance gains are small and the training time is
increased by 50% with respect to the non-reversible equivalent. Another method
that does not require image patching is introduced in [11], in which the method
alleviates memory consumption by swapping data from GPU to CPU memory
inside the forward propagation.

In this paper, we propose Cerberus, a single lightweight network to address
the task of brain tumor segmentation. Figure 1 shows an overview of our model.
We hypothesize that learning representations that are common to all the cate-
gories, followed by specialized modules to recover brain tumor regions, allows our
model to exploit both the shared coarse characteristics of neurological patholo-
gies, and the unique features that are inherent to each structure type. Cerberus
leverages a shared encoder to learn a common representation space with sufficient
expressive capabilities for identifying heterogeneous brain tumors. Our method
also learns how to combine the parameters learned for the specialized tasks to
solve the more challenging multi-label segmentation task. With less than 4M of
parameters, our model trains faster and can be trained on a single GPU. We
demonstrate the competitive performance of Cerberus in the official validation
sets of the BraTS Challenge 2018 and 2020. We will make our code publicly
available in order to ensure reproducibility and encourage further research.
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Fig. 1. Overview figure of Cerberus. Our approach uses a shared encoder that learns
a common representations which can be then exploited by specialized decoders. Then,
a combination module is applied to combine the kernels of each decoder to produce a
multi-label segmentation. Skip connections between the encoder and the decoders are
omitted for simplicity.

2 Method

We introduce Cerberus, a unified encoder-decoder architecture designed to simul-
taneously solve multiple binary semantic segmentation tasks and a multi-label
task. Our method uses a single encoder to extract rich features at different res-
olutions of the input image, and then inputs the resulting information to three
different decoders that specialize in specific structures. This strategy allows the
decomposition of a multi-label segmentation problem into various simpler bi-
nary tasks. Finally, Cerberus learns to combine the parameters learned for the
sub-tasks to solve a multi-label segmentation problem.

2.1 Cerberus architecture

Our model is composed of two main stages: the first one encodes general features
obtained from the multimodal volumes, and the second one specializes in solving
three binary tasks and a multi-label task. We conduct exhaustive experiments to
optimize every stage of our architecture and the training curriculum, and finally
define the best configuration empirically.

Encoder For the first stage we use an encoder with five blocks that contain
Depthwise Separable Convolutions (DSC) and a residual connection. Every block
duplicates the amount of feature maps and reduces to half the spatial resolution
of the input. We define the output feature maps at block i as

ei = Ei(ei−1) + ei−1, i ∈ {1, ..., 5} (1)

where e0 is the input image and Ei denotes a sequence of two DSC. Throughout
the entire architecture, every convolutional operation is followed by a normaliza-
tion layer and a ReLU activation. We use Group Normalization [17] instead of
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the standard Batch Normalization because the former is less affected by batches
of small size. Additionally, similar to U-Net, we use skip connections to connect
the features maps from each stage of the encoder with its corresponding block
in the decoder.

Decoder In the second stage, each block contains a single 3×3×3 convolutional
layer to combine the result of the next deepest decoder block with the input from
the corresponding skip connection. We include an upsample module composed
of a 1×1×1 convolutional layer followed by a trilinear upsampling operation to
double the spatial resolution and halve the number of feature maps of the input
from the decoder. The output of block i within the jth branch is calculated as

dj,i = Dj,i(Uj,i(dj,i+1) ‖ ei), j = {1, 2, 3} (2)

where D denotes the 3× 3× 3 convolution, U represents the upsample module
and ‖ is a concatenation operation. These decoders are specialized in segmenting
the different regions of the tumor.

To obtain a final multi-label segmentation we include a fourth path that
combines the kernels learned in the other decoders as follows:

Wml =
∑
j

αjWj

α = σ(F(P(W1 ‖W2 ‖W3)))

(3)

where α denotes the weight given to each kernel W . To calculate α we introduce
an attention module that concatenates the kernels, performs an average pooling
P along the spatial dimensions, and assign the weights using a fully connected
layer F and a softmax activation σ. Since we use the kernels learned from the
binary branches, the only additional parameters incurred in the multi-label path
come from the attention modules.

2.2 Loss function

Cerberus produces three binary segmentation outputs (WT, TC,ET ) and a final
multi-label (ML) output. We define a combination of the Dice loss and the Cross-
entropy loss calculated for each generated mask, and perform a weighted sum of
all four to optimize the network, as shown in Equation 4.

Loss =
∑
`

β`
(
LDice
` + LCE

`

)
; ` ∈ {WT, TC,ET,ML} (4)

We empirically found that the weights that maximize our results are β =
[0.1, 0.3, 0.2, 0.4].
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2.3 Pre-processing

Normalization of MRI intensity values is crucial for processing different modali-
ties in Neural Networks. Hence, we follow a standard normalization per patient:
for each modality, we subtract the mean and divide by the standard deviation
of the brain region, while setting the intensities outside the brain to zero.

2.4 Implementation details

We train our models with Adam optimizer with an initial learning rate of 1e− 3
and include an L2 regularization coefficient of 1e − 5. We reduce the initial
learning rate by a factor of 0.1 whenever the validation loss has not decreased for
30 epochs. We adopt the on-the-fly data augmentation strategy proposed by [12].
Our transformations include rotations, scaling, mirroring and gamma correction.
To address data imbalance, we define a patch-based sampling strategy such that
the center voxel in a patch has equal probability of belonging to any category.
Given the memory limitations of processing 3D images, we use patches of size
128×128×128 and set the batch size to 6 to maintain the memory consumption
under 12GB

2.5 Inference

During inference, the multi-label output corresponds to the segmentation of the
tumor and the three binary outputs are used to obtain the uncertainty of the
predictions for each region evaluated. For the uncertainty, we apply a sigmoid
function to the predictions, calculate the complement of the probabilities and
re-scale the values between 0 and 100. The result of this process is a pixel-wise
map with values close to zero where the network predicted a category with high
confidence. Also, we use patches extracted from the images at uniform intervals,
insuring that all pixels are covered. To reconstruct the final image, we assign
higher weights to the central voxel of each patch and combine all the predictions.
In the ablation studies no further processing is made. For the final results in the
official validation server, we train the models in a 5-fold cross-validation fashion
and perform an additional test time augmentation (TTA) step that consists of
flipping the patches along all axes and averaging the predictions. Finally, we
define a simple final post-processing step consisting on the elimination of any
component smaller than a threshold by assigning them to the nearest label.

3 Experiments and Results

3.1 Database

We develop our model on the BraTS 2020 dataset, which comprises MRI scans
of high grade glioblastomas and low grade gliomas. The annotation labels man-
ually provided by one to four raters are edema, necrosis and non-enhancing
tumor (NCR/NET), and enhancing tumor (ET). The challenge evaluates the
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following overlapping regions: whole tumor (WT), which includes all the three
labels; tumor core (TC) that comprises the ET and NCR/NET; and enhancing
tumor (ET). The training and validation sets contain 369 and 125 patients re-
spectively, each with four MRI modalities available: T1 weighted, post-contrast
T1 weighted, T2 weighted and FLAIR. The challenge provides an official server
for evaluation. Besides, we compare our performance to recent published papers
with results on the official validation set of BraTS 2018.

To conduct the ablation experiments, we split the training dataset into train-
ing and validation subsets with the 80% and 20% of the patients, respectively. We
choose the model’s weights that achieved the best Dice score on our validation
subset to obtain results on the official validation sets.

3.2 Evaluation

The BraTS challenge evaluates the performance of segmentation algorithms us-
ing the Dice score (DS), Hausdorff distance (H95%), sensitivity (recall) and
specificity. We report the average Dice score and Hausdorff distance over the
patients in the corresponding evaluation set. For the uncertainty evaluation, the
Dice score is calculated at different confidence measurements and the area under
the Dice vs. uncertainty threshold curve is reported as the Dice AUC. An addi-
tional integrated score considers the Dice AUC and the area under the curve of
the filtered true negatives and true positives for different thresholds.

3.3 Ablation experiments

We describe in detail the empirical choices within our model. We analyze the ad-
vantages of our approach by testing three types of architectures: multi-category
networks (shared encoder and decoder), independent binary networks (separated
encoder and decoder), and our proposed method with a shared encoder and sep-
arate decoders. We report the results in our validation subset from the BraTS
2020 patients in Table 1.

Table 1. Ablation experiments on our validation set. Parenthesis indicate the labels
used for training. The models with * was trained optimizing the annotated labels
(edema, NCR/NET and ET).

Dice Hausdorff95

Model ET WT TC ET WT TC

Single network* 0.770 0.889 0.823 9.24 13.82 13.21

Separate networks* 0.773 0.884 0.796 12.85 8.20 15.89
Separate networks 0.771 0.896 0.811 6.64 12.47 11.02
Cascaded networks 0.782 0.896 0.808 13.35 12.47 10.73

Separate decoders 0.783 0.895 0.836 6.42 15.07 14.08
Communication modules 0.773 0.888 0.844 7.44 16.34 10.07

Cerberus 0.794 0.897 0.845 3.59 6.19 6.47
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In the first setting we optimize the annotations provided by the challenge
(edema, NCR/NET and ET) instead of the regions given that our loss function
is designed for non-overlapping labels. Table 1 shows that this model obtains
lower performance for ET, the fine grained region. This phenomenon is probably
because the tasks are highly unbalanced, and a single decoder is not capable of
learning a proper representation for the smaller categories.

In the second setting we train independent networks optimizing the anno-
tations and the regions. The results demonstrate that directly optimizing the
regions results in better predictions, specially for the WT and TC regions. In
addition, we train cascaded networks by using the output from the coarsest re-
gions as input to the following networks. In this case the results for ET, the
smallest region. This happens because the coarsest regions guide the segmen-
tation of smaller structures by limiting the search space within the image, but
comes at the cost of training as many models as categories.

In the last setting, we train three models with shared encoders and different
specialized decoders. The first approach has completely independent decoders
that specialize to their corresponding task using only information from the en-
coder. In this case there is an improvement with respect to using separate net-
works, which proves that learning a unique representation space results in richer
features. In the second approach we share information during the decoding stage
as well by adding communication modules between the separate decoders. These
modules take information from the three paths and combine it as presented in
[8]. Finally, our Cerberus outperforms all methods in TC and ET and has results
comparable to the cascaded networks in WT.

3.4 Comparison with the State-of-the-Art

In Table 2, we compare our best model with similar methods that have results
in the official BraTS validation set and a published paper. Since all the methods
are evaluated in the 2018 challenge, we retrain our method using this dataset.
The metrics of the other methods are retrieved from the original papers.

Table 2. Comparison of Cerberus performance against competitive methods on the
2018 validation set.

Dice score Hausdorff95

Model Patch Params (M) FLOPS (G) ET WT TC ET WT TC

No New-Net [12] 128 10.36 202.25 0.796 0.908 0.843 3.12 4.79 8.16
Rev. U-Net [6] Full 12.37 − 0.803 0.910 0.862 2.58 4.58 6.84
DMFNet [7] 128 3.88 27.04 0.801 0.906 0.845 3.06 4.66 6.44
DCAN [18] 128 − − 0.817 0.912 0.862 3.57 4.26 6.13

Cerberus (ours) 128 4.02 49.82 0.797 0.895 0.835 4.22 7.77 10.3

Table 2 shows the competitive performance of our method in comparison
to the state-of-the-art. Cerberus obtains similar results to four top performing
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methods, even using a single network for the evaluation, against the five fold
cross-validation used by most of the other methods. If we compare Cerberus’
performance to the No New-Net results, the Dice scores for the three categories
are remarkably similar.

Cerberus presents minor differences in performance with respect to Reversible
U-Net, a single model trained on the 80% of the training data without model
ensembles. The major difference in performance is on the TC category, 3.1%,
and minor for ET (0.7%) and WT (1.6%). However, note that Reversible U-Net
has three times more parameters than our method.

We achieve comparable Dice scores in the three categories with respect to
DMFNet, presenting differences of 0.4%, 1.2% and 1.2% for ET, WT and TC,
respectively. Finally, compared to DCAN, the major performance gap is for TC
category (3.1%), and our model does not require training with cross-validations
and ensembles across different data partitions to achieve competitive scores.

Results on BraTS 2020 Validation and Test sets We further address the
competitiveness of Cerberus by evaluating its performance on the BraTS 2020
validation and test sets. Tables 3 and 4 show the evaluation metrics in both sets
for the Segmentation and Uncertainty Tasks, respectively.

Table 3. Cerberus performance in the Segmentation task on the official Validation
and Test sets of the BraTS 2020 Challenge.

Dice Hausdorff95

BraTS 2020 set ET WT TC ET WT TC

Validation 0.748 0.898 0.828 31.82 5.50 9.68
Test 0.807 0.867 0.826 12.34 6.14 21.20

Table 4. Cerberus performance in the Uncertainty task on the official Validation and
Test sets of the BraTS 2020 Challenge.

Dice AUC Score

BraTS 2020 set ET WT TC ET WT TC

Validation 0.912 0.826 0.762 - - -
Test 0.883 0.841 0.819 0.947 0.935 0.929

3.5 Qualitative results

In Figure 2, we show qualitative examples of the predictions using Cerberus for
patients in our validation subset to allow a visual comparison with the annota-
tions. These examples show the accurate localization of brain tumors, specially
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the largest region (edema in green) and its internal structures with our single
model.
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Fig. 2. Qualitative results of Cerberus’ predictions over T1 in our validation subset.
Top: predictions made by Cerberus; Bottom: annotations made by experts. Each col-
umn corresponds to a different patient. Edema is shown in green, ET in red and
NCR/NET in blue.

4 Conclusions

We present Cerberus, a method for brain tumor segmentation that uses a sin-
gle encoder to learn a shared representation space, independent decoders to
solve multiple binary tasks, and learns to combine the decoders parameters
to solve a multi-label segmentation task. Cerberus achieves competitive per-
formance against the state-of-the-art in the BraTS Challenge 2018, proving the
advantages of sharing a model for the feature extraction stage, and training
separate reconstruction networks to obtain specialized segmentations. We also
demonstrate the superiority and advantages of our approach by comparing it
with similar architectures that do not share the encoder or use a single decoder.
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