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1. Additional quantitative results
We present non-reference quantitative comparisons for the state-of-the-art methods on the NTIREsyn, AIMsyn, DPEDrw,

and FACESrw datasets. Table 1 and Table 2 show that our RSR model outperforms state-of-the-art models on PIQE and is
in a competitive range for BRISQUE and NIQE. This result confirms the qualitative finding reported on our main paper, that
our RSR model creates HR images with a good perceptual quality.

Method Training
Dataset

BRISQUE↓ NIQE↓ PIQE↓
NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg

Bicubic - 55.37 56.58 55.98 5.74 5.96 5.85 84.02 87.12 85.57

Impressionism [2]
NTIREsyn 13.32 22.66 17.99 3.15 2.51 2.83 17.47 31.10 24.28
AIMsyn 36.04 17.08 26.56 5.75 3.53 4.64 47.67 20.31 33.99
DPEDrw 38.97 34.37 36.67 4.04 3.35 3.70 25.82 29.18 27.50

ESRGAN-FS [1]
NTIREsyn 27.16 40.77 33.96 2.76 3.71 3.23 34.54 64.97 49.75
AIMsyn 27.60 15.98 21.79 4.40 2.68 3.54 38.07 20.30 29.19
DPEDrw 32.95 34.71 33.83 3.39 3.28 3.33 30.46 37.62 34.04

ESRGAN [4] DIV2K 35.08 28.33 31.70 6.27 2.67 4.47 50.72 39.99 45.36
RSR (Ours) DIV2K 16.47 19.24 17.86 3.65 3.37 3.51 19.77 17.68 18.72

Table 1. Non-reference metrics comparing our method and the state-of-the-art methods in NTIREsyn and AIMsyn datasets. ↓ indicates
lower is better. Red and blue colors highlight the best two scores.

2. Additional qualitative results
In Fig. 1 and Fig. 2 we include further qualitative results for the NTIREsyn, AIMsyn, DPEDrw, and FACESrw datasets.

Notice on Fig. 1 that our single robust model is able to enhance diverse types of images, including difficult textures like the
squirrel’s fur (second row) or the pattern in the military uniform (fourth row). Additionally, we further confirm that state-of-
the-art models tend to underperform when evaluated on unseen datasets (red frames). Fig. 2 provides additional examples of
the effectiveness of our model in removing noise. In particular, for the FACESrw dataset, our method removes the noise in
the input image without creating more artifacts.

*equal contribution



Method Training
Dataset

BRISQUE ↓ NIQE ↓ PIQE ↓
DPEDrw FACESrw Avg DPEDrw FACESrw Avg DPEDrw FACESrw Avg

Impressionism [2]
NTIREsyn 22.55 52.77 37.66 2.83 5.41 4.12 12.21 46.23 29.22
AIMsyn 21.33 52.51 36.92 4.12 5.80 4.96 25.09 34.85 29.97
DPEDrw 23.35 20.43 21.89 4.13 3.21 3.67 14.03 16.63 15.33

ESRGAN-FS[1]
NTIREsyn 46.12 64.16 55.14 4.83 5.82 5.33 48.66 92.00 70.33
AIMsyn 15.51 47.54 31.53 3.75 5.78 4.77 14.99 28.91 21.95
DPEDrw 22.94 48.56 35.75 3.21 5.05 4.13 12.06 34.22 23.14

RSR (Ours) DIV2K 21.72 35.93 28.83 5.34 6.32 5.83 9.59 12.34 10.97
Table 2. Non-reference comparison for the DPEDrw and FACESrw datasets. ↓ indicates that lower is better. Red and Blue highlights the
best and the second best score, respectively.

3. Limitation of Existing Literature
As we extensively discuss in the main paper, methods that perform well on a dataset with a specific corruption fail on

unseen artifacts. In this section, we qualitative highlight those findings. First, on Fig. 3 we find that the ESRGAN-FS model
trained on AIMsyn generates images with an unrealistic color intensity and hallucinates textures in the places where the input
images are noisy. This color hallucination might happen because of the corruptions in the AIMsyn dataset, as LR images
have less intense colorization due to strong compression artifacts. Therefore, the model learns to counteract this corruption.
In contrast, as out our single RSR model bypass learning on specific corruptions, we faithfully super-resolve the LR image
without creating unrealistic colors. Next, Fig. 4 shows that the Impressionism model trained on NTIREsyn increases the
JPEG compression artifacts present in AIMsyn images, whereas our model is able to remove it.

Fig. 5 and 6 show the effect that Impressionism trained on DPEDrw has on NTIREsyn and AIMsyn respectively. The
model hallucinates sharp details on incorrect parts of the images and creates unrealistic super-resolved images if the input
includes texture. Furthermore, for NTIREsyn the model creates a sharper and more noticeable noise instead or removing it.
Finally, in Fig. 7 we find that Impressionism trained on DPEDrw transforms the noise of FACESrw images into very strong
and unrealistic noise.

4. Additional Baseline
To assess the superior capacity of our method, we propose a new baseline. We aim to determine if it is possible to achieve

better results if we denoise the real-world input image with a state-of-the-art method on adversarial attacks and then super-
resolve the result with a pre-trained network (in this case, we use the pre-trained baseline). For the denoiser, we use the
winning method [3] in the competition NIPS 2017: Defense Against Adversarial Attack which achieved remarkable results
on denoising adversarially-attacked images. Table 3 shows that even if we use a method that is specialized in removing
adversarial noise, it is not enough to successfully remove the noise to reach a good result after super-resolving the input
image. Furthermore, our method outperforms this baseline, confirming the importance of the loss function to optimize, as
explained in the main paper.

Method PSNR↑ SSIM↑ LPIPS↓
NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg

Guided denoise [3] 11.99 12.10 12.04 0.22 0.23 0.22 0.60 0.59 0.60
RSR (Ours) 24.31 21.99 23.15 0.65 0.60 0.62 0.23 0.37 0.30

Table 3. Comparison of our method against a denoising method for adversarially-attacked images. ↑ and ↓ indicate higher is better and
lower is better, respectively. Best results are presented in bold.

5. Mixture of types of noise
To further confirm the generalization capacity of our framework we explore the use of different type of noise for real-

world SR. In particular, following [1], we model sensor noise as Gaussian noise with zero mean and a standard deviation of
8 and compression artifacts by converting the images to JPEG with a quality of 30. We performed two baseline experiments
in which we train 18k iterations only with images modified with each type of degradation. Furthermore, we perform three
mixed experiments in which each network iteration is trained with a different type of corruption: robust training and sensor
noise, robust training and compression artifacts and finally the mixture of all three types of degradation.



Table 5. Non-reference comparison for 100 random images of the
train set of NTIREsyn and AIMsyn. ↓ indicates that lower is better.
Red highlights the best score.

NIQE ↓Method NTIREsyn AIMsyn Avg
ESRGAN [4] 6.91 3.38 5.14
RSR (Ours) 4.65 4.90 4.77

Robust Training Sensor Noise Compression artifacts PSNR↑ SSIM↑ LPIPS↓
NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg NTIREsyn AIMsyn Avg

X 24.31 21.99 23.15 0.65 0.60 0.62 0.23 0.37 0.30
X 26.08 22.39 24.24 0.72 0.63 0.68 0.24 0.39 0.32

X 18.68 19.09 18.89 0.30 0.35 0.33 0.61 0.54 0.58
X X 25.43 21.60 23.52 0.69 0.58 0.64 0.24 0.37 0.31
X X 24.83 19.30 22.07 0.67 0.35 0.51 0.26 0.56 0.41
X X X 25.46 19.59 22.53 0.69 0.38 0.54 0.24 0.38 0.31

Table 4. Comparison of different types of noise for training the SR model. Best results for LPIPS are presented in bold.

Table 4 shows that simulating sensor noise results in a better performance that training with simulated compression arti-
facts. This phenomenon might be explained by the fact that compression artifacts make stronger modifications to the original
image, making the examples less useful for the network. Likewise, using compression artifacts in a mixture with robust
training is detrimental for the generalization capability of the network. However, using a mixture of the three types of degra-
dation results in an overall performance similar to our RSR. Thus, both sensor noise and compression artifacts work in a
complementary way with our robust training scheme.

6. Additional Ablation Analysis
6.1. Visualization of adversarial attack hyper-parameters

As the core of our model is to introduce adversarial noise that can potentially resemble real-world artifacts, we visualize
the optimized noise and the adversarial example for a training batch in each part of our ablation study. Fig. 8 shows that
changing the loss function for adversarial optimization does not reflect a significant perceptual difference in the noise that is
added to the images. However, the results in our main paper suggest that this imperceptible change helps in the improvement
of average LPIPS for our model.

On the one hand, Fig. 9 illustrates that, the higher the ε used in the attack, the stronger the noise that is present in the
adversarial examples. This stronger noise can be better appreciated on the fourth column in the adversarial examples of the
figure. On the other hand, Fig. 10 depicts that there is not a perceptual variation in the noise of the adversarial example when
we increase the iterations of the attack. This result is consistent with the quantitative results presented in our main paper
where we found that increasing the iterations does not have an effect on the final performance of the model.

Finally, Fig. 11 shows that increasing the scale of the structured noise creates a more aggregated optimized noise. This
result is also visualized on the adversarial examples. According to the quantitative results presented in our main paper, a
scale of 1.5 gives the ideal trade-off between having a hard but realistic adversarial example.

6.2. Quantitative Ablation on Training Set

We perform a quantitative comparison between our RSR model and ESRGAN [4], our baseline model, on 100 random
images from the training sets of NTIREsyn and AIMsyn. Since there is no HR ground-truth available for the training set,
we use the non-reference quantitative metric NIQE. Table 5 shows that, on average, our model outperforms ESRGAN in
perceptual quality on the training sets.
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Figure 1. Additional results on Synthetic images. Comparison between our method and state-of-the-art methods, for two synthetic
corruption datasets: NTIREsyn and AIMsyn. For reference, we show the bicubically upsampled input, the result of a supervised SISR
method (ESRGAN [4]), and the ground-truth (GT). Blue frames denote training and validation on the same dataset. Red frames denote
training and validation on different datasets. Green frames denote our method.
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Figure 2. Additional results on real-world images. Comparison between our method and state-of-the-art methods, for two real-world
datasets: DPEDrw and FACESrw. For reference, we show the bicubically upsampled input, the result of a supervised SISR method
(ESRGAN [4]), and the ground-truth (GT). Blue frames denote training and validation on the same dataset. Red frames denote training
and validation on different datasets. Green frames denote our method.
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Figure 3. Artifacts enforced on the NTIREsyn dataset Qualitative comparison between the artifacts created by ESRGAN-FS [1] trained
on AIMsyn and our RSR method trained on DIV2K. For reference, we show the bicubically upsampled input. Note that ESRGAN-FS
hallucinates the color intensity of the image.
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Figure 4. Artifacts enforced on the AIMsyn dataset Qualitative comparison between the artifacts created by Impressionism [2] trained
on NTIREsyn and our RSR method trained on DIV2K. For reference, we show the bicubically upsampled input. Note that Impressionism
increases the JPEG noise that AIMsyn includes instead of removing it.
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Figure 5. Artifacts enforced on the NTIREsyn dataset with training on DPEDrw Qualitative comparison between the artifacts created
by Impressionism trained on DPEDrw and our RSR method trained on DIV2K. For reference, we show the bicubically upsampled input.
Note that Impressionism hallucinates sharp details where it should remove noise.
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Figure 6. Artifacts enforced on the AIMsyn dataset with training on DPEDrw Qualitative comparison between the artifacts created by
Impressionism trained on DPEDrw and our RSR method trained on DIV2K. For reference, we show the bicubically upsampled input. Note
that Impressionism hallucinates sharp details on the image.
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Figure 7. Artifacts enforced on the FACESrw dataset with training on DPEDrw Qualitative comparison between the artifacts created
by Impressionism trained on DPEDrw and our RSR method trained on DIV2K. For reference, we show the bicubically upsampled input.
Note that Impressionism creates unrealistic super-resolved images in comparison with our results.
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Figure 8. Qualitative visualization of the loss ablation. Optimized noise and adversarial examples for the loss function used in the
adversarial attack’s ablations.
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Figure 9. Qualitative visualization of the ε ablation. Optimized noise and adversarial examples for different ε in the adversarial attack’s
ablations. Note that, the higher the ε, the stronger the noise in the adversarial examples.
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Figure 10. Qualitative visualization of the iterations ablation. Optimized noise and adversarial examples for different iterations in the
adversarial attack’s ablations.
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Figure 11. Qualitative visualization of the scale of structured noise. Optimized noise and adversarial examples for the different scales
of structured noise in the adversarial attack’s ablations. Note that, the higher the scale, the more aggregated the noise in the adversarial
examples.


