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ABSTRACT

We propose the first joint-task learning framework for brain
and vessel segmentation (JoB-VS) from Time-of-Flight Mag-
netic Resonance images. Unlike state-of-the-art vessel seg-
mentation methods, our approach avoids the pre-processing
step of implementing a model to extract the brain from the
volumetric input data. Skipping this additional step makes our
method an end-to-end vessel segmentation framework. JoB-
VS uses a lattice architecture that favors the segmentation of
structures of different scales (e.g., the brain and vessels). Its
segmentation head allows the simultaneous prediction of the
brain and vessel mask. Moreover, we generate data augmen-
tation with adversarial examples, which our results demon-
strate to enhance the performance. JoB-VS achieves 70.03%
mean AP and 69.09% F1-score in the OASIS-3 dataset and is
capable of generalizing the segmentation in the IXI dataset.
These results show the adequacy of JoB-VS for the challeng-
ing task of vessel segmentation in complete TOF-MRA im-
ages.

Index Terms— Brain vessel segmentation, Multitask
learning, Deep learning, TOF-MRA images.

1. INTRODUCTION

3D brain vessel tree segmentation is critical for diagnosing,
managing, treating, and intervening in a wide range of condi-
tions with large population-level implications [1]. Despite be-
ing a widely studied problem [2] and the surge of automated
deep learning approaches to address it, existing pipelines re-
quire a pre-processing step to generate a brain mask to remove
non-brain tissue signal from the images [1, 3, 4]. As a result,
it is not possible to achieve cerebrovascular segmentation in
an end-to-end fashion but through a two-step approach where
brain masks are first extracted and then fed to the brain vessel
segmentation algorithm.

Although there are several well-established algorithms to
generate brain masks (see Sec. 2 in [5]), the need for such
a step within a cerebrovascular tree segmentation pipeline
poses two problems. On the one hand, it represents an addi-
tional computational burden, as an additional model needs to
be trained for the sole purpose of brain extraction (also known
as skull stripping). On the other hand, although most brain ex-

Fig. 1. TOF-MRA brain masks obtained with SynthStrip [5]
(left), ROBEX [6] (center) and HD-BET [7] (right). These
methods are not designed nor tested for neurovascular images.

traction techniques generalize well across multiple brain im-
age modalities [5, 6, 7], these methods have not been designed
or tested for vessel-specific brain image modalities, such as
Time of Flight (TOF) Magnetic Resonance Angiography
(MRA). This condition leads to poor-quality results that need
to be manually corrected before the brain mask can be used
as input to the vessel segmentation step (Fig. 1). In this work,
we propose a Joint Brain-Vessel Segmentation framework,
JoB-VS, A joint-task learning approach that enables simulta-
neous brain and brain vessel segmentation. JoB-VS achieves
a true end-to-end segmentation by avoiding the additional
step of generating a brain mask for every unseen image to
be segmented. We evaluate the performance of the proposed
JoB-VS framework in a cohort of TOF-MRA images from
two well-known datasets, OASIS-3 [8] and IXI 1, demon-
strating our method’s capacity to achieve competitive results
for both vessel and brain segmentation. To ensure the repro-
ducibility of our results, we make our code publicly available
at https://github.com/BCV-Uniandes/JoB-VS.

1https://brain-development.org/
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Fig. 2. Overview of JoB-VS. Our end-to-end approach enables a simultaneous brain and vessel segmentation mask prediction
using complete TOF-MRA images. Our method builds upon ROG [9], a lattice 3D segmentation method, which we modify
with two segmentation heads to perform independent brain and vessel masks. Best viewed in color.

2. METHOD

Figure 2 depicts our Joint Brain-Vessel Segmentation (JoB-
VS) framework. Differently from previous works [1, 3, 4],
JoB-VS avoids a separate skull-stripping step to remove the
non-brain signal from the images at training. Instead, we
jointly train a 3D segmentation model to simultaneously pre-
dict separate label masks for both vessels and the brain tissue.

We build upon the RObust Generic medical image seg-
mentation framework (ROG) [9]. ROG performs segmenta-
tion in volumetric data leveraging large receptive fields and
high-resolution features thanks to its three-stage architecture
consisting of an initial module, a triangular-shaped lattice,
and a segmentation head. The lattice arrangement, which con-
nects every node with upper and lower-level nodes, preserves
the advantages of multi-scale processing, which is crucial for
vessel segmentation. Additionally, by controlling the lattice
length, L, ROG can favor different types of anatomical struc-
tures. By setting L = 2, we manage to achieve a better per-
ception of small structures, such as the blood vessels, and at
the same time, at the lower levels of the lattice, it preserves
information about larger structures, like the brain.

We modify the segmentation head to cope with multiple
tasks rather than the original single-task formulation. The
JoB-VS segmentation head has two convolutions and up-
sampling factors, yielding two outputs: the vessel and brain
masks. We consider equally the predictions of the vessels, y′v ,
and the brain mask, y′b, when estimating the total loss during
the joint learning process:

Ltotal = αLbrain(y
′
b, yb) + βLvessel(y

′
v, yv) (1)

with yv and yb being the vessel and the brain ground truth
annotations, respectively. The weights α and β control the
contribution of each loss to the total loss. According to our
experimental results, we set both parameters to 1. For each of
the losses, Lvessel and Lbrain, we use a combination of the
Dice loss and the Cross-Entropy, as described in [10]:

Lvessel = Lbrain = Ldice + LCE (2)

Free Adversarial Training Fine-tuning (AT FT). A com-
mon challenge of deep learning methods for vessel segmen-
tation is the difficulty of obtaining annotated data due to the
complexity of vascular trees and the small size of vessels [1].
To compensate for the small size of the annotated set, we
fine-tune JoB-VS using generated adversarial data augmen-
tation. For this purpose, we rely on “Free” Adversarial Train-
ing (AT) [11], which generates gradient-based perturbations
on the input data during training, allowing us to simultane-
ously update the model weights and the input perturbations
over N iterations on the same mini-batch. The strength of the
perturbation is controlled by the parameter ϵ, which we set in
8/255, and we set N=5.
Implementation details. The implementation of the deep
learning models was done using PyTorch. We train and
test the JoB-VS framework with a batch size of 1 in a single
NVIDIA TITAN Xp GPU. We use Adam with a weight decay
of 1e−5, an initial learning rate of 5e−4, and the scheduler
described in [9]. Generally, we train during 1000 epochs;
nonetheless, the training epochs may vary as we use an early
stop system when the learning rate is too low. We use the data
augmentation, input patch selection criteria, and inference
process used in [9].



Table 1. Method comparison. We report average mean Average Precision (mAP) and average max F1-score in the BM and
NBM test setup with standard deviation within our two-fold cross-validation and for the two training setups (BM and NBM).
The best and second-best results are shown in bold and underlined, respectively.

Training
setup Model mean AP (%) F1-score (%) clDice (%)

BM NBM BM NBM BM NBM

BM
Half U-net [3] 68.98 ± 3.26 23.96 ± 0.05 77.05 ± 0.06 36.84 ± 0.54 78.02 ± 0.64 34.35 ± 1.90
Residual U-Net [12] 77.02 ± 1.77 41.33 ± 9.76 74.35 ± 1.92 49.95 ± 6.63 75.10 ± 2.59 39.12 ± 5.86
Single-VS 81.13 ± 2.01 51.05 ± 9.78 78.64 ± 1.88 57.48 ± 5.99 80.22 ± 1.22 60.24 ± 3.90

NBM

Half U-net [3] 10.71 ± 14.80 26.91 ± 37.71 19.51 ± 26.90 33.71 ± 46.99 12.49 ± 17.67 35.48 ± 50.18
Residual U-Net [12] 73.43 ± 0.52 48.49 ± 8.43 70.77 ± 0.55 54.85 ± 4.77 69.52 ± 3.55 49.87 ± 2.97
Single-VS 74.64 ± 1.62 66.08 ± 5.75 74.87 ± 1.15 67.21 ± 3.31 74.63 ± 4.02 73.72 ± 1.72

NBM JoB-VS (Ours) 77.69 ± 1.63 70.03 ± 4.31 74.98 ± 0.58 69.09 ± 3.31 77.24 ± 1.56 74.56 ± 1.04

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

Datasets and Setup. We use a cohort of high-resolution 57
and 572 TOF-MRA images from the OASIS-3 [8] and the
Information eXtraction from Images (IXI) datasets, respec-
tively. TOF-MRA from OASIS-3 have volume dimensions
576 × 768 × 232 and voxel size 0.3×0.3×0.6 mm3. All of
them have been previously annotated (i.e., vessel and brain
labels) by an experienced rater and a neurologist [1]. Images
from IXI have an average volume dimension of 576 × 768
× 160 and an average voxel size 0.47×0.47×0.80 mm3. No
labels are available for the dataset.

All images were pre-processed following the guidelines
in [9, 10]. We re-sample the volumes with the median voxel
spacing in the TOF-MRAs to tackle heterogeneous patient
scanning. Furthermore, we apply z-score normalization for
each image in the dataset and perform further intensity mod-
ification with global statistics. In particular, we clip the in-
tensities to the [0.5, 99.5] percentiles of the vessel values and
perform z-score normalization using the mean and standard
deviation of all intensity values in the dataset.

We use two-fold cross-validation to train and quanti-
tatively assess our method with the OASIS-3 TOF-MRA
images. The folds contain images for 29 and 28 subjects. As
there are no available publicly labels for the IXI dataset, we
use this cohort of 572 TOF-MRA scans for qualitative assess-
ment of the generalization capabilities of our framework.
External baselines. We compare the proposed JoB-VS
framework to three vessel segmentation approaches. Two
of them are state-of-the art techniques for 3D brain vessel
segmentation, Half U-net [3] and DS6 [4], whereas the third
one has been used for retinal vessel extraction [12]. Addi-
tionally, we train a single-task vessel segmentation method
(Single-VS) adopting the original version of ROG for general
medical image segmentation [9].
Evaluation metrics. We evaluate the vessel segmentation
task with the mean Average Precision (mAP), the cldice met-
ric [13], and the maximum F1-score (F1), which is equivalent
to the Dice Similarity coefficient (DSC).

We justify this use of detection task metrics in vessel seg-
mentation, considering that tubular structures in three dimen-
sions are analogous to linear structures in two dimensions.
We evaluate the performance of the brain segmentation task
using the DSC. For the metrics of both tasks, we report the
mean and standard deviation between the fold’s performance.

Fig. 3. 3D renderings of vessel segmentation results on an
OASIS-3 subject. From left to right: TOF-MRA and ground
truth, BM segmentation, and NBM segmentation. From top to
bottom: Single-VS BM, Single-VS NBM, and JoB-VS NBM.
Note that in the Single-VS BM model (first row), the TOF-
MRA input was masked by the brain. Green indicates false
positive, and yellow indicates false negative.

3.2. Method Comparison

Table 1 summarizes the performance of the trained models
with the different setups. For a fair comparison with the ex-
ternal baselines, we use two experimental setups for training
and testing. First, we consider the standard approach used
by most vessel segmentation techniques, where a brain mask
(BM) is required during training to consider only the image
signal within the brain and discard any potential vessel anno-
tations outside the brain mask region. Second, we train the
methods using the original TOF-MRA images, with no brain
mask (NBM) required. In both scenarios, we evaluate the re-
sults obtained in the test set with BM (ground truths for base-
lines, predicted mask for JoB-VS) and without them (NBM).
We omit results from DS6, as we could not reach a perfor-



Table 2. Joint segmentation vs. single-task training before
and after using Adversarial Training fine-tuning (AT FT). We
report DSC for brain and mAP for vessel segmentation.

Model type AT FT Brain
DSC (%)

Vessel
mAP (%)

Single-task x 94.19 ± 0.22 63.09 ± 7.58
Single-task ✓ 96.29 ± 0.08 66.67 ± 7.61
JoB-VS x 95.60 ± 1.00 68.72 ± 5.92
JoB-VS ✓ 95.73 ± 0.74 70.03 ± 4.31

mance similar to that reported in the original publication [4].
Overall, all methods achieve over 68% performance in

all metrics when tested with a brain mask (BM), indepen-
dently of whether they were trained with or without a brain
mask. However, all baselines report a drop in performance
when trained in the NBM setup (i.e., 58.27%, 3.59%, 6.49%,
in mAP, for Half U-Net, Residual U-Net, and Single-VS).
When we test the models without using a brain mask at in-
ference (NBM), the evaluation metrics significantly drop, i.e.,
45.02%, 24.94%, 8.56% in mAP, for Half U-Net, Residual U-
Net, and Single-VS. The results expose their high dependence
on brain masks at training and testing to achieve good results.

JoB-VS results suggest that joint training may help the
model learn to delimit the relevant anatomical structures
(the vessels) within the brain. This outcome is reflected
in its highest performance (mAP=70.03%, F1=69.09%,
clDice=74.56%) in the NBM test setup. We further illustrate
this behavior in Figure 3, where models trained with BM
struggle to differentiate vessels from anatomical structures
with similar intensities outside the brain (i.e., the skull), in-
dicating they may be learning a threshold and not leveraging
other characteristics of vessel anatomy. By providing infor-
mation about the whole image (i.e., no masking), JoB-VS
avoids this problem.

Despite the positive effects of avoiding masking at train-
ing, the results suggest that using a brain mask at test time is
always beneficial, even for JoB-VS, which improves its per-
formance (mAP= 77.69%, F1=74.98%, clDice=77.24%). In
this respect, the joint segmentation of brain and vessel labels
is advantageous, as the former can be directly used to amelio-
rate the latter without needing any additional method.

3.3. Ablation Experiments

We study the advantages of the joint-task framework and ad-
versarial training fine-tuning (AT FT). To this end, we train
single-task models of ROG [9] for 1) brain segmentation and
2) vessel segmentation with input volumes where the brain
was extracted using the predictions of the single-task brain
model. We test the single-task vessel model in the BM setup
using the brain mask predictions from the trained brain model.
We also assess the performance JoB-VS method before and
after AT FT in the NBM test setup. Table 2 summarizes these

Fig. 4. Vessel segmentation results on IXI (subject IXI605-
HH-2598). The vessel mask is shown in red.

models’ performance, evidencing the benefit of AT FT as it
increases the performance by 1.31% and 3.58% in mAP in
the single and joint-task models.

Moreover, the brain segmentation model’s performance is
critical to vessel segmentation with single-task methods. Our
brain segmentation model has a DSC of 96.29%, which re-
sults in 66.67% mAP in the vessel segmentation. However,
a method with 100% DSC (predictions same as ground truth)
would result in vessel segmentation with 81.13% mAP (see
Sec. 3.2). Instead, the joint model improves the vessel seg-
mentation task without dependency on a brain mask generator
and its performance.

3.4. IXI Dataset and Monai APP

We test the generality power of our best model by making
inferences in the IXI Dataset. Figure 4 presents an example
illustrating how our joint-task approach can correctly identify
and differentiate vessels from other anatomical structures.
Additionally, we develop a MONAI [14] app to load our
method and model weights. We will make this app publicly
available to facilitate vessel annotation and the interactive
refinement of JoB-VS’ predicted vessel masks.

4. CONCLUSIONS

We introduce JoB-VS, a joint-task learning method for brain
and vessel segmentation in TOF-MRA images. By avoiding
the additional step of skull stripping, we propose an end-to-
end vessel and brain segmentation framework. In addition,
we employ “Free” Adversarial Training to compensate for the
limited training data size, typical in 3D brain vessel segmen-
tation. Our results demonstrate the benefits of joint training
and AT fine-tuning while proving competitive performance
in the vessel segmentation task across the OASIS-3 and IXI
datasets. Lastly, we develop a tool to contribute to further
expanding the limited datasets in this challenging task.
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