M.A. BRAVO AND P. ARBELÁEZ
13TH INTERNATIONAL CONFERENCE ON MEDICAL INFORMATION PROCESSING AND ANALYSIS (SIPAIM), 2017
Diabetic retinopathy (DR) is a disease in which the retina is damaged due to augmentation in the blood pressure of small vessels. DR is the major cause of blindness for diabetics. It has been shown that early diagnosis can play a major role in prevention of visual loss and blindness. This work proposes a computer based approach for the detection of DR in back-of-the-eye images based on the use of convolutional neural networks (CNNs). Our CNN uses deep architectures to classify Back-of-the-eye Retinal Photographs (BRP) in 5 stages of DR. Our method combines several preprocessing images of BRP to obtain an ACA score of 50.5%. Furthermore, we explore subproblems by training a larger CNN of our main classification task.