J. HERNANDEZ, C. VALENCIA, N. RATKOVICH, C. TORRES, F. MUÑOZ
HELIYON, 2019
The determination of multiphase flow parameters such as flow pattern, pressure drop and liquid holdup, is a very challenging and valuable problem in chemical, oil and gas industries, especially during transportation. There are two main approaches to solve this problem in literature: data based algorithms and mechanistic models. Although data based methods may achieve better prediction accuracy, they fail to explain the two-phase characteristics (i.e. pressure gradient, holdup, gas and liquid local velocities, etc.). Recently, many approaches have been made for establishing a unified mechanistic model for steady-state two-phase flow to predict accurately the mentioned properties. This paper proposes a novel data-driven methodology for selecting closure relationships from the models included in the unified model. A decision tree based model is built based on a data driven methodology developed from a 27670 points data set and later tested for flow pattern prediction in a set made of 9224 observations. The closure relationship selection model achieved high accuracy in classifying flow regimes for a wide range of two-phase flow conditions. Intermittent flow registering the highest accuracy (86.32%) and annular flow the lowest (49.11%). The results show that less than 10% of global accuracy is lost compared to direct data based algorithms, which is explained by the worse performance presented for atypical values and zones close to boundaries between flow patterns.
Addrs. Cra. 1 E No. 19A - 40. Mario Laserna Building - School of Engineering, Bogotá, Colombia, Zip 111711, Ph. +(571) 332 4327, 332 4328, 332 4329
Universidad de los Andes | Monitored by Mineducación
Recognition as University: Decree 1297 of May 30th, 1964.
Recognition as legal entity: Resolution 28 of February 23, 1949 Minjusticia.
© Universidad de los Andes. All rights reserved.